Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles

Li Xue Wang Liang Xiong Jian-Qiao Shao Qiu-Ping Jiang Rong Chen Shu-Fen

Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles

Li Xue, Wang Liang, Xiong Jian-Qiao, Shao Qiu-Ping, Jiang Rong, Chen Shu-Fen
PDF
Get Citation
  • Organic photovoltaic devices (OPVs) have attracted considerable attention because of their advantages of light-weight, low-cost, large-scale manufacturing process and mechanical flexibility. Unfortunately, in order to achieve efficient carrier extraction, the photoactive layer in OPVs must be rather thin (100 nm or less) due to its extremely low carrier mobilities for most of organic/polymer materials (on the order of 10-4 cm2/(V·s)). Such thin photoactive layers lead to a significant loss of incident sunlight, thereby improving a final low light absorption efficiency and power conversion efficiency (PCE). To promote the light absorption and thus enhance PCE of OPVs, Au tetrahedron nanoparticles (NPs) are synthesized in this work and then they are wrapped with poly (sodium 4-styrenesulfonate) (PSS) to form core-shell structure tetrahedron NPs (Au@PSS tetrahedron NPs). They are further incorporated into the interface of hole extraction layer and light photoactive layer to improve PCE of OPVs by enhancing their surface plasmon resonance effect-induced light absorption. The influences of doping concentration and PSS shell thickness of theses Au tetrahedron NPs on device performances are explored. The results indicate that the best performing PCE occurs at 6% concentration of Au@PSS tetrahedron NPs, reaching 3.08%, while it is further improved to 3.65% with an optimized PSS shell thickness of 2.5 nm, showing an enhancement factor of 22.9% compared with that of the control counterpart. The performance improvement of OPVs mainly originates from the promoted light absorption of donor due to the location of the resonant absorption peak of Au@PSS tetrahedron NPs in the absorption region of donor. Simultaneously, the introduction of the PSS shell promotes the dissociation of excitons and charge transfer. All of these contribute to the increasing of short-circuit current, fill factor and PCE of OPVs.
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the National Natural Science Foundation of China (Grant No. 61274065), the Outstanding Youth Foundation of Jiangsu Province of China (Grant No. BK20160039), and the Major Project of Innovation Fund of Nanjing Institute of Technology, China (Grant Nos. CKJA201402, CKJA201602).
    [1]

    Du P, Jing P T, Li D, Cao Y H, Liu Z Y, Sun Z C 2015 Small 11 2454

    [2]

    Kakavelakis G, Vangelidis I, Heuer-Jungemann A, Kanaras G A, Lidorikis E, Stratakis E, Kymakis E 2016 Adv. Energy Mater. 6 1501640

    [3]

    Lu L Y, Luo Z Q, Xu T, Yu L P 2013 Nano Lett. 13 59

    [4]

    He Z, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 593

    [5]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [6]

    Sun Y, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J 2012 Nat. Mater. 11 44

    [7]

    Cui Y, Yao H F, Yang C Y, Zhang S Q, Hou J H 2018 Acta Polym. Sin. 2 223

    [8]

    Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D 2000 Sol. Energy Mater. Sol. Cells 61 97

    [9]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [10]

    Morfa A J, Rowlen K L, Reilly T H, Romero M J 2008 Appl. Phys. Lett. 92 013504

    [11]

    Yang X, Chueh C C, Li C Z, Yip H L, Yin P, Chen H Z, Chen W C, Jen A K Y 2013 Adv. Energy Mater. 3 666

    [12]

    Wang C C D, Choy W C H, Duan C, Fung D D S, Sha W E I, Xie F X, Huang F, Cao Y 2012 J. Mater. Chem. 22 1206

    [13]

    Xie F X, Choy W C H, Sha W E I, Zhang D, Zhang S Q, Li X C, Leung C W, Hou J H 2013 Energy Environ. Sci. 6 3372

    [14]

    Wang L, Yao Y, Ma X Q, Huang C T, Liu Z W, Yu H T, Wang M H, Zhang Q, Li X, Chen S F, Huang W 2018 Org. Electron. 61 96

    [15]

    Hao H, Wang L, Ma Xiao Q, Cao K, Yu H T, Wang M H, Gu W W, Zhu R, Anwar M S, Chen S F, Huang W 2018 Solar RRL 2 1800061

    [16]

    Peng L, Zhang R, Chen S F, Zhang Q, Deng L L, Feng X M, Huang W 2016 RSC Adv. 6 90944

    [17]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

    [18]

    Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H, Huang W 2014 Appl. Phys. Lett. 104 213903

    [19]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [20]

    Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X G, Wang L H, Huang W 2015 Chin. Phys. B 24 045201

    [21]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302

    [22]

    Ng A, Yiu W K, Foo Y, Shen Q, Bejaoui A, Zhao Y, Gokkaya H C, Djurisšić A B, Zapien J A, Chan W K, Surya C 2014 ACS Appl. Mater. Interfaces 6 20676

    [23]

    Zhang R, Zhou Y F, Peng L, Li X, Chen S F, Feng X M, Guan Y Q, Huang W 2016 Sci. Rep. 6 25036

  • [1]

    Du P, Jing P T, Li D, Cao Y H, Liu Z Y, Sun Z C 2015 Small 11 2454

    [2]

    Kakavelakis G, Vangelidis I, Heuer-Jungemann A, Kanaras G A, Lidorikis E, Stratakis E, Kymakis E 2016 Adv. Energy Mater. 6 1501640

    [3]

    Lu L Y, Luo Z Q, Xu T, Yu L P 2013 Nano Lett. 13 59

    [4]

    He Z, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 593

    [5]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [6]

    Sun Y, Welch G C, Leong W L, Takacs C J, Bazan G C, Heeger A J 2012 Nat. Mater. 11 44

    [7]

    Cui Y, Yao H F, Yang C Y, Zhang S Q, Hou J H 2018 Acta Polym. Sin. 2 223

    [8]

    Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D 2000 Sol. Energy Mater. Sol. Cells 61 97

    [9]

    Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519

    [10]

    Morfa A J, Rowlen K L, Reilly T H, Romero M J 2008 Appl. Phys. Lett. 92 013504

    [11]

    Yang X, Chueh C C, Li C Z, Yip H L, Yin P, Chen H Z, Chen W C, Jen A K Y 2013 Adv. Energy Mater. 3 666

    [12]

    Wang C C D, Choy W C H, Duan C, Fung D D S, Sha W E I, Xie F X, Huang F, Cao Y 2012 J. Mater. Chem. 22 1206

    [13]

    Xie F X, Choy W C H, Sha W E I, Zhang D, Zhang S Q, Li X C, Leung C W, Hou J H 2013 Energy Environ. Sci. 6 3372

    [14]

    Wang L, Yao Y, Ma X Q, Huang C T, Liu Z W, Yu H T, Wang M H, Zhang Q, Li X, Chen S F, Huang W 2018 Org. Electron. 61 96

    [15]

    Hao H, Wang L, Ma Xiao Q, Cao K, Yu H T, Wang M H, Gu W W, Zhu R, Anwar M S, Chen S F, Huang W 2018 Solar RRL 2 1800061

    [16]

    Peng L, Zhang R, Chen S F, Zhang Q, Deng L L, Feng X M, Huang W 2016 RSC Adv. 6 90944

    [17]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

    [18]

    Chen S F, Cheng F, Mei Y, Peng B, Kong M, Hao J Y, Zhang R, Xiong Q H, Wang L H, Huang W 2014 Appl. Phys. Lett. 104 213903

    [19]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [20]

    Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X G, Wang L H, Huang W 2015 Chin. Phys. B 24 045201

    [21]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302

    [22]

    Ng A, Yiu W K, Foo Y, Shen Q, Bejaoui A, Zhao Y, Gokkaya H C, Djurisšić A B, Zapien J A, Chan W K, Surya C 2014 ACS Appl. Mater. Interfaces 6 20676

    [23]

    Zhang R, Zhou Y F, Peng L, Li X, Chen S F, Feng X M, Guan Y Q, Huang W 2016 Sci. Rep. 6 25036

  • [1] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [2] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [3] Application Research of Ant Colony Cellular Optimization Algorithm in Population Evacuation Path Planning. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191774
    [4] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [6] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [7] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [9] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [10] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lü Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [11] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [12] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [13] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  90
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2018
  • Accepted Date:  01 October 2018

Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles

  • 1. Mechanical Engineering Institute, Nanjing Institute of Technology, Nanjing 211167, China;
  • 2. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications(NUPT), Nanjing 210023, China
Fund Project:  Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404501), the National Natural Science Foundation of China (Grant No. 61274065), the Outstanding Youth Foundation of Jiangsu Province of China (Grant No. BK20160039), and the Major Project of Innovation Fund of Nanjing Institute of Technology, China (Grant Nos. CKJA201402, CKJA201602).

Abstract: Organic photovoltaic devices (OPVs) have attracted considerable attention because of their advantages of light-weight, low-cost, large-scale manufacturing process and mechanical flexibility. Unfortunately, in order to achieve efficient carrier extraction, the photoactive layer in OPVs must be rather thin (100 nm or less) due to its extremely low carrier mobilities for most of organic/polymer materials (on the order of 10-4 cm2/(V·s)). Such thin photoactive layers lead to a significant loss of incident sunlight, thereby improving a final low light absorption efficiency and power conversion efficiency (PCE). To promote the light absorption and thus enhance PCE of OPVs, Au tetrahedron nanoparticles (NPs) are synthesized in this work and then they are wrapped with poly (sodium 4-styrenesulfonate) (PSS) to form core-shell structure tetrahedron NPs (Au@PSS tetrahedron NPs). They are further incorporated into the interface of hole extraction layer and light photoactive layer to improve PCE of OPVs by enhancing their surface plasmon resonance effect-induced light absorption. The influences of doping concentration and PSS shell thickness of theses Au tetrahedron NPs on device performances are explored. The results indicate that the best performing PCE occurs at 6% concentration of Au@PSS tetrahedron NPs, reaching 3.08%, while it is further improved to 3.65% with an optimized PSS shell thickness of 2.5 nm, showing an enhancement factor of 22.9% compared with that of the control counterpart. The performance improvement of OPVs mainly originates from the promoted light absorption of donor due to the location of the resonant absorption peak of Au@PSS tetrahedron NPs in the absorption region of donor. Simultaneously, the introduction of the PSS shell promotes the dissociation of excitons and charge transfer. All of these contribute to the increasing of short-circuit current, fill factor and PCE of OPVs.

Reference (23)

Catalog

    /

    返回文章
    返回