-
-
1.
南京师范大学物理系,南京210024
-
1.
-
[1] Chen Zhang-Yao, Xue Zeng-Hong, Zhang Chun, Ji Ying, Bi Qin-Sheng. Oscillation behaviors and mechanism of Rayleigh oscillator with periodic switches. Acta Physica Sinica, 2014, 63(1): 010504. doi: 10.7498/aps.63.010504 [2] Zhang Wu-Fan, Zhao Qiang. Hopf bifurcation and chaos in the solar-forced El Niño /Southern Oscillation recharge oscillator model. Acta Physica Sinica, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201 [3] Tan Ping-An, Zhang Bo, Qiu Dong-Yuan. Stabilization of chaotic behaviour and spiking current in thyristor with time-delayed feedback control. Acta Physica Sinica, 2010, 59(8): 5299-5306. doi: 10.7498/aps.59.5299 [4] Bao Gang, Narenmandula, Tubuxin, Eredencang. Dynamic behavior of complete synchronization of coupled chaotic oscillators. Acta Physica Sinica, 2007, 56(4): 1971-1974. doi: 10.7498/aps.56.1971 [5] Tang Jia-Shi, Xiao Han. Amplitude control of limit cycle of coupled van der Pol oscillator. Acta Physica Sinica, 2007, 56(1): 101-105. doi: 10.7498/aps.56.101 [6] Hao Jian-Hong, Li Wei. Phase synchronization of R?ssler in two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491 [7] Ma Wen-Qi, Yang Cheng-Hui. Hopf bifurcation from synchronous chaos and its circuit simulation in a coupled nonlinear oscillator system. Acta Physica Sinica, 2005, 54(3): 1064-1070. doi: 10.7498/aps.54.1064 [8] Lu Yun-Qing, Wang Wen-Xiu, He Da-Ren. Crisis of transient chaos in an electronic relaxation oscillator. Acta Physica Sinica, 2003, 52(5): 1079-1084. doi: 10.7498/aps.52.1079 [9] ZHANG XU, SHEN KE. CONTROLLING SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE SYSTEMS. Acta Physica Sinica, 2001, 50(4): 624-628. doi: 10.7498/aps.50.624 [10] Zhou Tian-Shou, Zhang Suo-Chun. . Acta Physica Sinica, 2001, 50(1): 8-12. doi: 10.7498/aps.50.8 [11] MA WEN-QI, YANG JUN-ZHONG, LIU WEN-JI, BAO GANG, HU GANG. GENERALIZED WINDING NUMBER OF CHAOTIC OSCILLATORS AND HOPF BIFURCATION FROM SYNCHRONOUS CHAOS. Acta Physica Sinica, 1999, 48(5): 787-794. doi: 10.7498/aps.48.787 [12] CHEN ZHI-RONG, CHEN FEI-WU, YUAN HUI, LI XIAO-HUI, ZHAO LIAN-QING, NIU WEN-ZHANG, CHEN BING-XING, TENG SHU-LAN. CHAOTIC DIMENSIONS OF FORCED OREGONATOR OSCILLATOR AND CUBIC MAP. Acta Physica Sinica, 1992, 41(7): 1081-1086. doi: 10.7498/aps.41.1081 [13] YU XI-LING, JIN HUI-QIANG, YAN GUANG-HUI, WANG GUANG-RUI, CHEN SHI-GANG. FORCED BRUSSELATOR AND CIRCULAR MAPPING. Acta Physica Sinica, 1990, 39(3): 351-358. doi: 10.7498/aps.39.351 [14] HU GANG, A. GRECOS. THE EXACT SOLUTION OF RELAXATION PROCESS OF AN OSCILLATOR IN A THERMO-BATH. Acta Physica Sinica, 1985, 34(1): 105-111. doi: 10.7498/aps.34.105 [15] WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. KOLMOGOROV CAPACITY AND LYAPUNOV DIMENSION OF STRANGE ATTRACTORS OF FORCED BRUSSELATOR. Acta Physica Sinica, 1984, 33(9): 1246-1254. doi: 10.7498/aps.33.1246 [16] WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1984, 33(7): 1008-1016. doi: 10.7498/aps.33.1008 [17] WANG GUANG-RUI, HAO BAI-LIN. TRANSITION FROM QUASIPERIODIC REGIME TO CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1984, 33(9): 1321-1325. doi: 10.7498/aps.33.1321 [18] ZHANG JI-YUE, GUO ZHI-AN. SPHERICALLY SYMMETRIC STRUCTURES OF THE BRUSSELATOR. Acta Physica Sinica, 1983, 32(12): 1574-1585. doi: 10.7498/aps.32.1574 [19] HAO BAI-LIN, ZHANG SHU-YU. SUBHARMONIC STROBOSCOPIC SAMPLING METHOD FOR STUDY OF PERIOD-DOUBLING BIFURCATION AND CHAOTIC PHENOMENA IN FORCED NONLINEAR OSCILLATORS. Acta Physica Sinica, 1983, 32(2): 198-208. doi: 10.7498/aps.32.198 [20] WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. INTERMITTENT CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica, 1983, 32(9): 1139-1148. doi: 10.7498/aps.32.1139
Catalog
Metrics
- Abstract views: 8218
- PDF Downloads: 798
- Cited By: 0
Publishing process
- Accepted Date:
21 January 1994
- Published Online:
20 January 1995