-
First-principles calculations are employed to investigate total energies and electronic structures of the B/N doped silicon nanowires, the B/N doped silicon nanowires with and without dangling bond (DB). And the calculation indicates that the DB would lead to the doping failure. Band-structure calculations indicate that B/N doped silicon nanowires without dangling bond show regular p/n type of the charge carrier, while the dangling bond would cause signal atom doping failure, which is not due to the transfer of electrons, but results from the capturing of the electron (hole) by the defect energy level induced by the surface dangling bond. Moreover, the small molecule adsorption can reactivate impurities doping p/n characteristics. The reactivation mechanism is not the transfer of the electrons, thus it can hold the doping characteristics.
-
Keywords:
- doping failure /
- first principle /
- silicon nanowires /
- dangling bond
[1] Rurali R 2010 Rev. Mod. Phys. 82 427
[2] Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M 2008 Nano Lett. 8 3456
[3] Tian B, Kempa T J, Lieber C M 2008 Chem. Soc. Rev. 38 16
[4] Cui Y, Wei Q, Park H, Lieber C M 2001 Science 293 1289
[5] Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M 2001 Science 294 1313
[6] Moon C Y, Lee W J, Chang K 2008 Nano Lett. 8 3086
[7] Rurali R, Palummo M, Cartoixá X 2010 Phys. Rev. B 81 23
[8] Iori F, Degoli E, Magri R, Marri I, Gantele G, Ninno D, Trani F, Pulci O, Ossicini S 2007 Phys. Rev. B 76 8
[9] Ossicini S, Degoli E, Iori F, Luppi E, Magri R, Gantele G, Trani F, Ninno D 2005 Appl. Phys. Lett. 87 173120
[10] Peelaers H, Partoens B, Peeters F M 2006 Nano Lett. 6 2781
[11] Chrost J, Hinarejos J J, Michel E G, Miranda R 1995 Surf. Sci. 330 34
[12] Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018
[13] Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T 2003 Science 299 1874
[14] Schmid H, Bj rk M T, Knoch J, Riel H, Riess W, Rice P, Topuria T 2008 J. Appl. Phys. 103 024304
[15] Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T, Tong S Y 2005 J. Chem. Phys. 123 144703
[16] Zhang R, Zheng W, Jiang Q 2009 J. Phys. Chem. C 113 10384
[17] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Cakmak M, Srivastava G P 2003 Surf. Sci. 532 556
-
[1] Rurali R 2010 Rev. Mod. Phys. 82 427
[2] Kempa T J, Tian B, Kim D R, Hu J, Zheng X, Lieber C M 2008 Nano Lett. 8 3456
[3] Tian B, Kempa T J, Lieber C M 2008 Chem. Soc. Rev. 38 16
[4] Cui Y, Wei Q, Park H, Lieber C M 2001 Science 293 1289
[5] Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber C M 2001 Science 294 1313
[6] Moon C Y, Lee W J, Chang K 2008 Nano Lett. 8 3086
[7] Rurali R, Palummo M, Cartoixá X 2010 Phys. Rev. B 81 23
[8] Iori F, Degoli E, Magri R, Marri I, Gantele G, Ninno D, Trani F, Pulci O, Ossicini S 2007 Phys. Rev. B 76 8
[9] Ossicini S, Degoli E, Iori F, Luppi E, Magri R, Gantele G, Trani F, Ninno D 2005 Appl. Phys. Lett. 87 173120
[10] Peelaers H, Partoens B, Peeters F M 2006 Nano Lett. 6 2781
[11] Chrost J, Hinarejos J J, Michel E G, Miranda R 1995 Surf. Sci. 330 34
[12] Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C, Wolkow R A 2010 New J. Phys. 12 083018
[13] Ma D D D, Lee C S, Au F C K, Tong S Y, Lee S T 2003 Science 299 1874
[14] Schmid H, Bj rk M T, Knoch J, Riel H, Riess W, Rice P, Topuria T 2008 J. Appl. Phys. 103 024304
[15] Zhang R Q, Lifshitz Y, Ma D D D, Zhao Y L, Frauenheim T, Lee S T, Tong S Y 2005 J. Chem. Phys. 123 144703
[16] Zhang R, Zheng W, Jiang Q 2009 J. Phys. Chem. C 113 10384
[17] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[20] Cakmak M, Srivastava G P 2003 Surf. Sci. 532 556
Catalog
Metrics
- Abstract views: 8056
- PDF Downloads: 646
- Cited By: 0