-
In this paper, we give indirect methods constructed Wronskian solution of a general nonlinear evolution equations. Under the properties of the computing of Young diagram we have proved the proposition of this paper and discuss the relationship between the permutation group character and Young diagram expressions coefficient.
-
Keywords:
- nonlinear evolution equations /
- Wronskian determinant solution /
- Young diagram /
- irreducible character
[1] Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University Press)
[2] Rogers C, Shadwick W R 1982 Bäcklund Transformation and Their Application (New York: Academic Press)
[3] Zhang H Q, Fan E G, Lin G 1998 Chin. Phys. 7 649
[4] Matveev V B, Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192
[6] Freeman N C, Nimmo J J C 1983 Phys. Lett. A 95 1
[7] Hirota R, Tang 1986 J. Phys. Soc. Jpn. 55 2137
[8] Zhang S Q 2008 Acta Phys. Sin. 57 1335 (in Chinese) [张善卿 2008 物理学报 57 1335]
[9] OHTA Y 2003 J. Nonlinear Math. Phys. 10 143
[10] Bogoyavlenskii O I 1990 Lett. Nuovo. Cimento. Math. USSR. Izv. 34 245
[11] Toda K, Yu S J, Fukuyama F 1999 Rep. Math. Phys. 44 247
[12] Yan Z Y, Zhang H Q 2002 Comput. Math. Appl. 44 1430
[13] Tian B, Zhao K Y, Gao Y T 1997 Int. J. Engng. Sci. 35 1081
[14] Calogero F, Degasperis A 1976 Nuovo. Cimento. B 32 201
[15] Elwakil S A, El-labany S K, Zahran M A, Sabry R 2003 Z. Naturforsch. A 58 39
[16] Estvez P G, Hernaez G A 2000 J. Phys. A 33 2131
[17] Yan Z Y 2003 Czech. J. Phys. 53 89
[18] Gilson C R, Nimmo J J C 1993 Phys. Lett. A 180 337
[19] Qu C Z 1996 Theor. Phys. 25 369
-
[1] Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge University Press)
[2] Rogers C, Shadwick W R 1982 Bäcklund Transformation and Their Application (New York: Academic Press)
[3] Zhang H Q, Fan E G, Lin G 1998 Chin. Phys. 7 649
[4] Matveev V B, Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[5] Hirota R 1971 Phys. Rev. Lett. 27 1192
[6] Freeman N C, Nimmo J J C 1983 Phys. Lett. A 95 1
[7] Hirota R, Tang 1986 J. Phys. Soc. Jpn. 55 2137
[8] Zhang S Q 2008 Acta Phys. Sin. 57 1335 (in Chinese) [张善卿 2008 物理学报 57 1335]
[9] OHTA Y 2003 J. Nonlinear Math. Phys. 10 143
[10] Bogoyavlenskii O I 1990 Lett. Nuovo. Cimento. Math. USSR. Izv. 34 245
[11] Toda K, Yu S J, Fukuyama F 1999 Rep. Math. Phys. 44 247
[12] Yan Z Y, Zhang H Q 2002 Comput. Math. Appl. 44 1430
[13] Tian B, Zhao K Y, Gao Y T 1997 Int. J. Engng. Sci. 35 1081
[14] Calogero F, Degasperis A 1976 Nuovo. Cimento. B 32 201
[15] Elwakil S A, El-labany S K, Zahran M A, Sabry R 2003 Z. Naturforsch. A 58 39
[16] Estvez P G, Hernaez G A 2000 J. Phys. A 33 2131
[17] Yan Z Y 2003 Czech. J. Phys. 53 89
[18] Gilson C R, Nimmo J J C 1993 Phys. Lett. A 180 337
[19] Qu C Z 1996 Theor. Phys. 25 369
Catalog
Metrics
- Abstract views: 6355
- PDF Downloads: 776
- Cited By: 0