Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground-state and magnetization behavior of the frustrated spin-1/2 antisymmetric diamond chain

Zhao Yang Qi Yan Du An Liu Jia Xiao Rui Shan Ying Wu You Yang Si-Hao

Citation:

Ground-state and magnetization behavior of the frustrated spin-1/2 antisymmetric diamond chain

Zhao Yang, Qi Yan, Du An, Liu Jia, Xiao Rui, Shan Ying, Wu You, Yang Si-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The low-dimensional quantum spin systems have been extensively studied in the past three decades due to the novel ground states and rich magnetic behaviors,especially the quantum spin chain with diamond topology structure. Motivated by recent experimental success in Cu3(CO3)2(OH)2 compound,which is regarded as a model material of spin-1/2 diamond chain,researchers have paid a lot of attention to various variants of diamond spin chains.In this paper,we mainly examine the magnetic properties of an antisymmetric spin-1/2 Ising-Heisenberg diamond chain with the secondneighbor interaction between nodal spins.By using exact diagonalization and transfer-matrix methods,the ground-state phase diagram,magnetization behavior and macroscopic thermodynamics are exactly solved for the particular case that all magnetic bonds yield antiferromagnetic couplings,which usually shows the most interesting magnetic features closely related to a striking interplay between geometric frustration and quantum fluctuations.To clearly illustrate the effect of second-neighbor interaction item,we consider a highly frustrated situation that all Ising-Heisenberg bonds and Heisenberg bonds possess the same interaction strength.The calculation results indicate that the second-neighbor interaction item will enrich ground states and magnetization plateaus.A classical ferrimagnetic phase FRI1 corresponding to a novel two-thirds of intermediate plateau with translationally broken symmetry is introduced,manifesting itself as up-up-up-down-up-up spin configuration at a ground-state.In addition,there are other four distinct ground states which can be identified from the phase diagram,i.e.,one saturated paramagnetic phase SP,one classical ferrimagnetic phase FRI2,one quantum ferrimagnetic phase QFI and the unique quantum antiferromagnetic phase QAF.The classical phase FRI2 and quantum phase QFI both generate one-third of magnetization plateau.It is worth mentioning that all the values of these magnetization plateaus satisfy the Oshikawa-Yamanaka-Affleck condition.Besides,the results also have shown a rich variety of temperature dependence of total magnetization and specific heat.The magnetization displays the remarkable thermal-induced changes as the external field is sufficiently close to critical value where two or more than two different ground states coexist.At the critical field relevant to a coexistence of two different states,the total magnetization displays a monotonic decrease trend.The thermal dependence of zero-field specific heat displays relative complex variations for different second-neighbor interactions between nodal spins.At first,the specific heat presents only a single rounded Schottky-type maximum.Using the second-neighbor interaction,another sharp peak arises at low-temperature and is superimposed on this round maximum,and the specific heat exhibits a double-peak structure. On further strengthening,the low-temperature one keeps its height shifting towards high temperature,while the hightemperature round peak suffers great enhancement and moves in an opposite direction.Finally,the low temperature peak entirely merges with the Schottky-type peak at a certain value of second-neighbor interaction,and above this value, the specific curve recovers its single peak structure.The observed double-peak specific heat curves mainly originate from thermal excitations between the ground-state spin configuration QAF and the ones close enough in energy to the ground state.
      Corresponding author: Qi Yan, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn ; Du An, qiyan@dlnu.edu.cn;duan@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547236), the General Project of the Education Department of Liaoning Province, China (Grant No. L2015130), and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Dalian Minzu University, China (Grant No. 201712026371), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DC201501065, DCPY2016014).
    [1]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Kuwai T 2004 J. Magn. Magn. Mater. 272 900

    [2]

    Rule K C, Wolter A U B, Sllow S, Tennant D A, Brhl A, Khler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [3]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Dasgupta T S, Janson O, Rosner H, Brhl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [4]

    Takano K, Kubo K, Sakamoto H 1996 J. Phys.: Condens. Matter 8 6405

    [5]

    Okamoto K, Tonegawa T, Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979

    [6]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [7]

    Ivanov N B, Richter J, Schulenburg J 2009 Phys. Rev. B 79 104412

    [8]

    Aimo F, Krmer S, Klanjek M, Horvatić M, Berthier C 2011 Phys. Rev. B 84 012401

    [9]

    Takano K, Suzuki H, Hida K 2009 Phys. Rev. B 80 104410

    [10]

    Gu B, Su G 2007 Phys. Rev. B 75 17443

    [11]

    Verkholyak T, Strečka J 2013 Phys. Rev. B 88 134419

    [12]

    Pereira M S S, de Moura F A B F, Lyra M L 2008 Phys. Rev. B 77 024402

    [13]

    Rojas O, de Souza S M, Ohanyan V, Khurshudyan M 2011 Phys. Rev. B 83 094430

    [14]

    Pereira M S S, de Moura F A B F, Lyra M L 2009 Phys. Rev. B 79 054427

    [15]

    Strečka J, Jačur M 2003 J. Phys.:Condens. Matter 15 4519

    [16]

    Čanov L, Strečka J, Jačur M 2006 J. Phys.:Condens. Matter 18 4967

    [17]

    Valverde J S, Rojas O, de Souza S M 2008 J. Phys.:Condens. Matter 20 345208

    [18]

    Torrico J, Rojas M, Pereira M S S, Strečka J, Lyra M L 2016 Phys. Rev. B 93 014428

    [19]

    Ohanyan V, Honecker A 2012 Phys. Rev. B 86 054412

    [20]

    Hovhannisyan V V, Ananikian N S, Kenna R 2016 Physica A 453 116

    [21]

    Hovhannisyan V V, Strečka J, Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401

    [22]

    Visinescu D, Madalan A M, Andruh M, Duhayon C, Sutter J P, Ungur L, van den Heuvel W, Chibotaru L F 2009 Chem. Eur. J 15 11808

    [23]

    van den Heuvel W, Chibotaru L F 2010 Phys. Rev. B 82 174436

  • [1]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Kuwai T 2004 J. Magn. Magn. Mater. 272 900

    [2]

    Rule K C, Wolter A U B, Sllow S, Tennant D A, Brhl A, Khler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [3]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Dasgupta T S, Janson O, Rosner H, Brhl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [4]

    Takano K, Kubo K, Sakamoto H 1996 J. Phys.: Condens. Matter 8 6405

    [5]

    Okamoto K, Tonegawa T, Kaburagi M 2003 J. Phys.: Condens. Matter 15 5979

    [6]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [7]

    Ivanov N B, Richter J, Schulenburg J 2009 Phys. Rev. B 79 104412

    [8]

    Aimo F, Krmer S, Klanjek M, Horvatić M, Berthier C 2011 Phys. Rev. B 84 012401

    [9]

    Takano K, Suzuki H, Hida K 2009 Phys. Rev. B 80 104410

    [10]

    Gu B, Su G 2007 Phys. Rev. B 75 17443

    [11]

    Verkholyak T, Strečka J 2013 Phys. Rev. B 88 134419

    [12]

    Pereira M S S, de Moura F A B F, Lyra M L 2008 Phys. Rev. B 77 024402

    [13]

    Rojas O, de Souza S M, Ohanyan V, Khurshudyan M 2011 Phys. Rev. B 83 094430

    [14]

    Pereira M S S, de Moura F A B F, Lyra M L 2009 Phys. Rev. B 79 054427

    [15]

    Strečka J, Jačur M 2003 J. Phys.:Condens. Matter 15 4519

    [16]

    Čanov L, Strečka J, Jačur M 2006 J. Phys.:Condens. Matter 18 4967

    [17]

    Valverde J S, Rojas O, de Souza S M 2008 J. Phys.:Condens. Matter 20 345208

    [18]

    Torrico J, Rojas M, Pereira M S S, Strečka J, Lyra M L 2016 Phys. Rev. B 93 014428

    [19]

    Ohanyan V, Honecker A 2012 Phys. Rev. B 86 054412

    [20]

    Hovhannisyan V V, Ananikian N S, Kenna R 2016 Physica A 453 116

    [21]

    Hovhannisyan V V, Strečka J, Ananikian N S 2016 J. Phys.:Condens. Matter 28 085401

    [22]

    Visinescu D, Madalan A M, Andruh M, Duhayon C, Sutter J P, Ungur L, van den Heuvel W, Chibotaru L F 2009 Chem. Eur. J 15 11808

    [23]

    van den Heuvel W, Chibotaru L F 2010 Phys. Rev. B 82 174436

  • [1] Xie Yuan-Dong. Wave solitons of hyper-elliptic function in anisotropic Heisenberg spin chain. Acta Physica Sinica, 2018, 67(19): 197502. doi: 10.7498/aps.67.20181005
    [2] Zheng Yi-Dan, Mao Zhu, Zhou Bin. Thermal entanglement of Ising-Heisenberg chain with triangular plaquettes. Acta Physica Sinica, 2017, 66(23): 230304. doi: 10.7498/aps.66.230304
    [3] Fan Hong-Rui, Yuan Ya-Li, Hou Xi-Wen. Thermal geometric discords in a two-qubit Heisenberg XY model. Acta Physica Sinica, 2016, 65(22): 220301. doi: 10.7498/aps.65.220301
    [4] Yang Xiao-Yong, Xue Hai-Bin, Liang Jiu-Qing. Spin coherent-state transformation and analytical solutions of ground-state based on variational-method for spin-Bose models. Acta Physica Sinica, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [5] Liu Cong, Xu Xiao-Dong, Liu Xiao-Jun. Acoustic band fracture variation of low frequency transmission zone in one-dimensional solid-fluid periodic structures under omnidirectional incidence. Acta Physica Sinica, 2013, 62(20): 204302. doi: 10.7498/aps.62.204302
    [6] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [7] Zhou Zong-Li, Zhang Guo-Shun, Lou Ping. The antiferromagnetic Heisenberg model after a suddenly switched-on interaction. Acta Physica Sinica, 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [8] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [9] Lin Li, Li Yun, Gu Zhao-Lin, Lau Sit-Kit, Cheng Guang-Xu. A square lines-source model for calculating transfer matrix of two-dimensional acoustic cavity. Acta Physica Sinica, 2009, 58(8): 5484-5490. doi: 10.7498/aps.58.5484
    [10] Wu Chong-Qing, Zhao Shuang. Study on the localization of the electric dipole sources. Acta Physica Sinica, 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [11] Yang Peng-Fei, Bai Jin-Tao, Yang Xiao-Peng. The strict solutions to the field distribution of superconducting unbounded slab model. Acta Physica Sinica, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [12] Jin Shuo, Xie Bing-Hao. Algebraic structure and squeezed state solutions of the XYZ antiferromagnetic Heisenberg model in an external magnetic field. Acta Physica Sinica, 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [13] HUANG SHI-ZHONG, RUAN TU-NAN, WU NING, ZHENG ZHI-PENG. A RIGOROUS SOLUTION TO BARGMANN-WIGNER EQUATION FOR SPIN 5/2. Acta Physica Sinica, 2001, 50(8): 1456-1462. doi: 10.7498/aps.50.1456
    [14] GUO HUA. EXACT SOLUTION OF THE TIME-DEPENDENT DIRAC EQUATION. Acta Physica Sinica, 1999, 48(6): 983-986. doi: 10.7498/aps.48.983
    [15] SUN JIU-XUN. EXACTLY SOLVABLE POTENTIAL WITH FOUR PARAMETERS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [16] Chen Xiao-Yu. . Acta Physica Sinica, 1995, 44(9): 1484-1488. doi: 10.7498/aps.44.1484
    [17] WANG FU-GAO, HU JIA-ZHEN. FREE-FERMION APPROXIMATE SOLUSION OF THE ISING MODEL ON UNION JACK LATTICE. Acta Physica Sinica, 1993, 42(5): 853-858. doi: 10.7498/aps.42.853
    [18] TANG KUN-FA, HU JIA-ZHEN. EXACT SOLUTION OF A GENERALISED MIXED SPIN MODEL ON DISORDER DOMAIN. Acta Physica Sinica, 1988, 37(9): 1564-1568. doi: 10.7498/aps.37.1564
    [19] WU ZI-YU, WANG KE-LIN. EXACT CONTINUUM MODEL FOR POLYACETYLENE. Acta Physica Sinica, 1986, 35(7): 931-938. doi: 10.7498/aps.35.931
    [20] YANG ZHAN-RU, F. Y. WU. EXACT SOLUTION OF A DILUTE DOUBLE BOND POTTS MODEL ON THE DECORATED SQUARE LATTICE. Acta Physica Sinica, 1985, 34(4): 484-492. doi: 10.7498/aps.34.484
Metrics
  • Abstract views:  5129
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2017
  • Accepted Date:  04 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回