Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of parameter prior information on effect of colored noise in Bayesian frequency estimation

Yang Di Wang Yuan-Mei Li Jun-Gang

Citation:

Influence of parameter prior information on effect of colored noise in Bayesian frequency estimation

Yang Di, Wang Yuan-Mei, Li Jun-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Parameter estimation, which undertakes one of the vital missions in quantum metrology, has attracted a lot of attention in recent years. A large number of investigations on the frequency estimation have been carried out. Most of them are based on Cramér-Rao bound estimation approach in which almost perfect knowledge of the parameter to be estimated is given. In reality, however, one has inadequate prior knowledge about the parameter to be estimated. Then the Bayesian estimation approach in which we can perform the estimation even if we only have partial prior information about the parameter would be an ideal choice. Prior information about the parameter can play a significant role in Bayesian statistical inference. So it is interesting to know how the prior knowledge affects the estimation accuracy in the estimation process. In the solid-state realization of probe system, material-specific fluctuations typically lead to the major contribution to the intrinsic noise. Then it is interesting to study the effects of colored noise on the quantum parameter estimation. In this work, we study the inhibitory effects of prior probability distribution of the parameter to be estimated on the effects of colored noise under the framework of Bayesian parameter estimation theory. In particular, we estimate the intensity of a magnetic field by adopting a spin-1/2 system which is influenced by the colored noise with 1/fα spectrum. To evaluate the accuracy of estimation, we obtain the Bayes cost analytically which can be applied to the noisy channels. We mainly focus on the inhibitory effect of prior probability distribution of measured parameter on the non-Gaussianity of noise. We find that for the case of broad prior frequency distribution, the influence of non-Gaussianity on the estimation is very weak. While for the case of narrow prior frequency distribution, the influence of non-Gaussianity on the estimation is strong. That means that in the Bayesian approach, when we have enough prior information about the frequency, the non-Gaussianity can conduce to the improvement of the accuracy of the estimation of the frequency. When we lose the prior information, we also lose the improvement of the accuracy from the non-Gaussianity. The uncertainty of the prior information tends to eliminate the effects of the non-Gaussianity of the noise.
      Corresponding author: Li Jun-Gang, jungl@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775019) and the Fundamental Research Fund of Beijing Institute of Technology, China.
    [1]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (England: Cambridge University Press) pp51, 52

    [2]

    Paris M G A, Řeháček J 2010 Quantum Estimation Theory (Berlin: Springer-Verlag) pp1, 2

    [3]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp231, 252

    [4]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p64

    [5]

    Dowling J P 2008 Contemp. Phys. 49 125

    [6]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [7]

    Pairs M G A 2009 Int. J. Quantum Inform. 7 125

    [8]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [9]

    Demkowicz-Dobrzański R, Kołodyński J, Guţǎ M 2012 Nat. Commun. 3 1063

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nat. Phys. 7 406

    [11]

    Liu Y C, Xu Z F, Jin G R 2011 Phys. Rev. Lett. 107 013601

    [12]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [13]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [14]

    Jarzyna M, Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010

    [15]

    Demkowicz-Dobrzański R 2011 Phys. Rev. A 83 061802R

    [16]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton, NJ: Princeton University Press) pp498-500

    [17]

    Lu X M, Sun Z, Wang X G, Luo S L, Oh C H 2013 Phys. Rev. A 87 050302

    [18]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301

    [19]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [20]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832

    [21]

    Chin A W, Huegla S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601

    [22]

    Monras A, Paris M G A 2007 Phys. Rev. Lett. 98 160401

    [23]

    Li X L, Li J G, Wang Y M 2017 Phys. Lett. A 381 216

    [24]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [25]

    Zhong W, Sun Z, Ma J, Wang X G, Nori F 2013 Phys. Rev. A 87 022337

    [26]

    Weiss U 1993 Quantum Dissipative System (Singapore: World Scientific) p5

    [27]

    Yoshihara F, Harrabi K, Niskanen A O, Nakamura A, Tsai J S 2006 Phys. Rev. Lett. 97 167001

    [28]

    Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F, Shnirman A 2007 Phys. Rev. Lett. 98 047004

    [29]

    Bergli J, Galperin Y M, Altshuler B L 2009 New J. Phys. 11 025002

    [30]

    Benedetti C, Buscemi F, Bordone P 2013 Phys. Rev. A 87 052328

    [31]

    Benedetti C, Paris M G A, Maniscalco S 2014 Phys. Rev. A 89 012114

    [32]

    Ban M 2016 Quantum Inf. Process. 15 2213

    [33]

    Li J G, Wang Y M, Yang D, Zou J 2017 Phys. Rev. A 96 052130

    [34]

    Wiebe N, Granade C E, Ferrie C, Cory D G 2014 Phys. Rev. Lett. 112 190501

    [35]

    Wang J W, Paesani S, Santagati R, Knauer S, Gentile A A, Wiebe N, Petruzzella M, O’Brien J L, Rarity J G, Laing A, Thompson M G 2017 Nat. Phys. 13 551

    [36]

    Stenberg M P V, Köhn O, Wilhelm F K 2016 Phys. Rev. A 93 012122

  • [1]

    Wiseman H M, Milburn G J 2009 Quantum Measurement and Control (England: Cambridge University Press) pp51, 52

    [2]

    Paris M G A, Řeháček J 2010 Quantum Estimation Theory (Berlin: Springer-Verlag) pp1, 2

    [3]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp231, 252

    [4]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p64

    [5]

    Dowling J P 2008 Contemp. Phys. 49 125

    [6]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [7]

    Pairs M G A 2009 Int. J. Quantum Inform. 7 125

    [8]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [9]

    Demkowicz-Dobrzański R, Kołodyński J, Guţǎ M 2012 Nat. Commun. 3 1063

    [10]

    Escher B M, de Matos Filho R L, Davidovich L 2011 Nat. Phys. 7 406

    [11]

    Liu Y C, Xu Z F, Jin G R 2011 Phys. Rev. Lett. 107 013601

    [12]

    Liu G Q, Zhang Y R, Chang Y C, Yue J D, Fan H, Pan X Y 2015 Nat. Commun. 6 6726

    [13]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [14]

    Jarzyna M, Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010

    [15]

    Demkowicz-Dobrzański R 2011 Phys. Rev. A 83 061802R

    [16]

    Cramér H 1946 Mathematical Methods of Statistics (Princeton, NJ: Princeton University Press) pp498-500

    [17]

    Lu X M, Sun Z, Wang X G, Luo S L, Oh C H 2013 Phys. Rev. A 87 050302

    [18]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301

    [19]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [20]

    Zhang Y M, Li X W, Yang W, Jin G R 2013 Phys. Rev. A 88 043832

    [21]

    Chin A W, Huegla S F, Plenio M B 2012 Phys. Rev. Lett. 109 233601

    [22]

    Monras A, Paris M G A 2007 Phys. Rev. Lett. 98 160401

    [23]

    Li X L, Li J G, Wang Y M 2017 Phys. Lett. A 381 216

    [24]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [25]

    Zhong W, Sun Z, Ma J, Wang X G, Nori F 2013 Phys. Rev. A 87 022337

    [26]

    Weiss U 1993 Quantum Dissipative System (Singapore: World Scientific) p5

    [27]

    Yoshihara F, Harrabi K, Niskanen A O, Nakamura A, Tsai J S 2006 Phys. Rev. Lett. 97 167001

    [28]

    Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F, Shnirman A 2007 Phys. Rev. Lett. 98 047004

    [29]

    Bergli J, Galperin Y M, Altshuler B L 2009 New J. Phys. 11 025002

    [30]

    Benedetti C, Buscemi F, Bordone P 2013 Phys. Rev. A 87 052328

    [31]

    Benedetti C, Paris M G A, Maniscalco S 2014 Phys. Rev. A 89 012114

    [32]

    Ban M 2016 Quantum Inf. Process. 15 2213

    [33]

    Li J G, Wang Y M, Yang D, Zou J 2017 Phys. Rev. A 96 052130

    [34]

    Wiebe N, Granade C E, Ferrie C, Cory D G 2014 Phys. Rev. Lett. 112 190501

    [35]

    Wang J W, Paesani S, Santagati R, Knauer S, Gentile A A, Wiebe N, Petruzzella M, O’Brien J L, Rarity J G, Laing A, Thompson M G 2017 Nat. Phys. 13 551

    [36]

    Stenberg M P V, Köhn O, Wilhelm F K 2016 Phys. Rev. A 93 012122

  • [1] Hao Wang, Duan Rui, Yang Kun-De. Bayesian geoacoustic parameter inversion based on dispersion characteristics of normal mode water wave and ground wave. Acta Physica Sinica, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [3] Li Qian-Qian, Yang Fan-Lin, Zhang Kai, Zheng Bing-Xiang. Moving source parameter estimation in an uncertain environment. Acta Physica Sinica, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [4] Shen Ya-Jun, Guo Yong-Feng, Xi Bei. Steady state characteristics in FHN neural system driven by correlated non-Gaussian noise and Gaussian noise. Acta Physica Sinica, 2016, 65(12): 120501. doi: 10.7498/aps.65.120501
    [5] Wang Liu, He Wen-Ping, Wan Shi-Quan, Liao Le-Jian, He Tao. Evolutionary modeling for parameter estimation for chaotic system. Acta Physica Sinica, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [6] Lin Jian, Xu Li. Parameter estimation for chaotic systems based on hybrid biogeography-based optimization. Acta Physica Sinica, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [7] Yang Bo, Mei Dong-Cheng. Effect of non-Gaussian noise on negative mobliity. Acta Physica Sinica, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [8] Jin Xiao-Qin, Xu Yong, Zhang Hui-Qing. The reliability of logical operation in a one-dimensional bistable system induced by non-Gaussian noise. Acta Physica Sinica, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [9] Yan Peng-Cheng, Hou Wei, Qian Zhong-Hua, He Wen-Ping, Sun Jian-An. The analysis of the influence of globe SST anomalies on 500 hPa temperature field based on Bayesian. Acta Physica Sinica, 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [10] Long Wen, Jiao Jian-Jun. Parameter estimation for chaotic system based on evolution algorithm with hybrid crossover. Acta Physica Sinica, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [11] He Liang, Du Lei, Huang Xiao-Jun, Chen Hua, Chen Wen-Hao, Sun Peng, Han Liang. Non-Gaussian analysis of noise for metal interconnection electromigration. Acta Physica Sinica, 2012, 61(20): 206601. doi: 10.7498/aps.61.206601
    [12] Li Yang, Guo Shu-Xu. A new method to estimate the parameter of 1/f Noise of high power semiconductor laser diode based on sparse decomposition. Acta Physica Sinica, 2012, 61(3): 034208. doi: 10.7498/aps.61.034208
    [13] Hao Chong-Qing, Wang Jiang, Deng Bin, Wei Xi-Le. Estimating topology of complex networks based on sparse Bayesian learning. Acta Physica Sinica, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [14] Zhang Jing-Jing, Jin Yan-Fei. Stochastic resonance in FHN neural system driven by non-Gaussian noise. Acta Physica Sinica, 2012, 61(13): 130502. doi: 10.7498/aps.61.130502
    [15] Cao Xiao-Qun, Song Jun-Qiang, Zhang Wei-Min, Zhao Jun, Zhang Li-Lun. Estimating parameters of chaotic system with variational method. Acta Physica Sinica, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [16] Zhang Jing-Jing, Jin Yan-Fei. Mean first-passage time and stochastic resonance in an asymmetric bistable system driven by non-Gaussian noise. Acta Physica Sinica, 2011, 60(12): 120501. doi: 10.7498/aps.60.120501
    [17] Xu Chao, Kang Yan-Mei. Mean response time of FitzHugh-Nagumo model in the presence of non-Gaussian noise and a periodic signal. Acta Physica Sinica, 2011, 60(10): 108701. doi: 10.7498/aps.60.108701
    [18] Guo Pei-Rong, Xu Wei, Liu Di. Time dependence of entropy flux and entropy production for a stochastic system with double singularities driven by non-Gaussian noise. Acta Physica Sinica, 2009, 58(8): 5179-5185. doi: 10.7498/aps.58.5179
    [19] Zhao Yan, Xu Wei, Zou Shao-Cun. The steady state probability distribution and mean first passage time of FHN neural system driven by non-Gaussian noise. Acta Physica Sinica, 2009, 58(3): 1396-1402. doi: 10.7498/aps.58.1396
    [20] Chen Zheng, Zeng Yi-Cheng, Fu Zhi-Jian. A novel parameter estimation method of signal in chaotic background. Acta Physica Sinica, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
Metrics
  • Abstract views:  7119
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2017
  • Accepted Date:  28 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回