Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Correlation between electrical resistivity and strength of copper alloy and material classification

Li Hong-Ming Dong Chuang Wang Qing Li Xiao-Na Zhao Ya-Jun Zhou Da-Yu

Citation:

Correlation between electrical resistivity and strength of copper alloy and material classification

Li Hong-Ming, Dong Chuang, Wang Qing, Li Xiao-Na, Zhao Ya-Jun, Zhou Da-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Low electrical resistivity and high strength are a basic requirements for copper alloys.However,it has been widely known that these two properties are contradictory to each other:high electrical resistivity means extensive electron scattering by obstacles in the alloy,which in turn blocks dislocation movement to enhance mechanical strength.That is to say,any increase in strength necessarily brings about an increase in electrical resistivity.Essentially,strength and electrical resistivity are coupled in metal alloy as both are issued from a similar microstructural mechanism. That is why it is generally difficult to evaluate these alloys comprehensively and to select the materials appropriately.
    The present work addresses this fundamental problem by analyzing the dependence of hardness (in relation to strength) and electrical resistivity on solute content for deliberately designed ternary[Moy/(y+ 12)Ni12/(y+12)]xCu100-x alloys (at.%),where x=0.3-15.0 is the total solute content,y=0.5-6.0 is the ratio between Mo and Ni.The Mo-centered and Ni-nearest-neighbored[Mo1-Ni12]cluster structure are used to construct a short-range-order structure model of solid solution.The cluster[Mo1-Ni12]in solution enhances the strength,without increasing the electrical resistivity much,for the solutes are organized into cluster-type local atomic aggregates that reduce the dislocation mobility more strongly than electron scattering.The short-range-order structure has an essentially identical function for strength and electrical resistivity. In this solution state,both hardness and resistivity increase linearly with solute content increasing.When the solute constituents do not meet the requirement for ideal solution,i.e.,Mo-Ni ratio exceeds 1/12,the maximum value that the cluster[Mo1-Ni12]can accommodate,the solid solution should be destabilized and precipitation should occur,such as Mo precipitation in this case.The deviation from the linear change of resistivity and strength with solute content are caused by different alloy states,that is,solid solution and precipitation,which contribute to the resistivity and strength differently.Here we define a new term,the ratio of residual tensile strength to residual electrical resistivity,i.e.the “strength/resistivity ratio” in short,which represents an essential property of the alloy system.This ratio is 7×108 MPa/Ω· m) for the Cu-Ni-Mo alloy in complete solid solution state,and it is in a range of (310-490) 108 MPa/Ω·m) for the Cu-Ni-Mo alloys in a fully precipitation state (i.e.,most of Mo solute atoms precipitate out of the Cu matrix).
    Finally this new parameter is applied to the classification of common copper industrial alloys for the purpose of laying the basis for material selection.It is found that the strength/resistivity ratio of 310 effectively marks the boundary between the fully precipitated state and precipitation plus solution state.Using this criterion,it is concluded that alloys based on Cu-(Cr,Zr,Mg,Ag,Cd) are suitable for high-strength and high-conductivity applications.However,alloys based on binary systems Cu-(Be,Ni,Sn,Fe,Zn,Ti,Al) cannot realize the same purpose.The finding of the line dividing the characteristic properties of alloy having a strength-resistivity-ratio of 310 provides a key quantitative basis for comprehensively evaluating the alloy performance,which can effectively guide material selection and development of high strength and high conductivity copper alloys.
    [1]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [2]

    Motohisa M 1990 J. Japan CU and Brass Research Association 29 18

    [3]

    Motohisa M 1998 J. Japan Copper and Brass Research Association 27 93

    [4]

    Li H M, Zhao Y J, Li X N, Zhou D Y, Dong C 2016 J. Phys. D: Appl. Phys. 49 035306

    [5]

    Li H M, Zhou D Y, Dong C 2018 J. Electron. Mater. DOI10.1007/s11664-018-6709-4

    [6]

    Matthiessen A, Vogt C 1864 Phil. Trans. R. Soc. Lond. 154 167

    [7]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [8]

    Metals A S f, Davis J R 2009 ASM Handbook. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (William Park Woodside: American Society for Metals)

    [9]

    Li X N, Liu L J, Zhang X Y, Chu J P, Wang Q, Dong C 2012 J. Electron. Mater. 41 3447

    [10]

    Jin Y, Adachi K, Takeuchi T, Suzuki H G 1998 J. Mater. Sci. 33 1333

    [11]

    Kin S H, Lee D N 2002 Metall. Mater. Trans. 33 1605

    [12]

    Singh R P, Lawley A, Friedman S, Murty Y V 1991 Mater. Sci. Eng. A 145 243

    [13]

    Ning Y T, Zhang X H, Wu Y J 2007 Trans. Nonferr. Met. Soc. China 17 378

    [14]

    Song J S, Hong S I, Park Y G 2005 J. Alloys Compd. 388 69

    [15]

    Gao H Y, Wang J, Sun B D 2009 J. Alloys Compd. 469 580

    [16]

    Wu Z W, Chen Y, Meng L 2009 J. Alloys Compd. 481 236

    [17]

    Verhoeven J D, Chueh S C, Gibson E D 1989 J. Mater. Sci. 24 1748

    [18]

    Hong S I, Hill M A 1998 Acta Metall. 46 4111

    [19]

    Renaud C V, Gregory E, Wong J 1986 Adv. Cryog. Eng. Mater. 32 443

    [20]

    Mattissen D, Raabe D, Heringhaus F 1999 Acta Mater. 47 1627

    [21]

    Tenwick M J, Davies H A 1988 Mater. Sci. Eng. 97 543

    [22]

    Nagarjuna S, Balasubramanian K, Sarma D S 1999 J. Mater. Sci. 34 2929

    [23]

    Nagarjuna S, Sharma K K, Sudhakar I, Sarma D S 2001 Mater. Sci. Eng. A 313 251

  • [1]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [2]

    Motohisa M 1990 J. Japan CU and Brass Research Association 29 18

    [3]

    Motohisa M 1998 J. Japan Copper and Brass Research Association 27 93

    [4]

    Li H M, Zhao Y J, Li X N, Zhou D Y, Dong C 2016 J. Phys. D: Appl. Phys. 49 035306

    [5]

    Li H M, Zhou D Y, Dong C 2018 J. Electron. Mater. DOI10.1007/s11664-018-6709-4

    [6]

    Matthiessen A, Vogt C 1864 Phil. Trans. R. Soc. Lond. 154 167

    [7]

    Zhang P, Li S X, Zhang Z F 2011 Mater. Sci. Eng. A 529 62

    [8]

    Metals A S f, Davis J R 2009 ASM Handbook. 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (William Park Woodside: American Society for Metals)

    [9]

    Li X N, Liu L J, Zhang X Y, Chu J P, Wang Q, Dong C 2012 J. Electron. Mater. 41 3447

    [10]

    Jin Y, Adachi K, Takeuchi T, Suzuki H G 1998 J. Mater. Sci. 33 1333

    [11]

    Kin S H, Lee D N 2002 Metall. Mater. Trans. 33 1605

    [12]

    Singh R P, Lawley A, Friedman S, Murty Y V 1991 Mater. Sci. Eng. A 145 243

    [13]

    Ning Y T, Zhang X H, Wu Y J 2007 Trans. Nonferr. Met. Soc. China 17 378

    [14]

    Song J S, Hong S I, Park Y G 2005 J. Alloys Compd. 388 69

    [15]

    Gao H Y, Wang J, Sun B D 2009 J. Alloys Compd. 469 580

    [16]

    Wu Z W, Chen Y, Meng L 2009 J. Alloys Compd. 481 236

    [17]

    Verhoeven J D, Chueh S C, Gibson E D 1989 J. Mater. Sci. 24 1748

    [18]

    Hong S I, Hill M A 1998 Acta Metall. 46 4111

    [19]

    Renaud C V, Gregory E, Wong J 1986 Adv. Cryog. Eng. Mater. 32 443

    [20]

    Mattissen D, Raabe D, Heringhaus F 1999 Acta Mater. 47 1627

    [21]

    Tenwick M J, Davies H A 1988 Mater. Sci. Eng. 97 543

    [22]

    Nagarjuna S, Balasubramanian K, Sarma D S 1999 J. Mater. Sci. 34 2929

    [23]

    Nagarjuna S, Sharma K K, Sudhakar I, Sarma D S 2001 Mater. Sci. Eng. A 313 251

  • [1] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [2] Li Rui, Zuo Xiao-Wei, Wang En-Gang. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy. Acta Physica Sinica, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [3] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [4] Liu Ya-Jie. Prediction of the magneto-resistivity of manganese oxides La0.67Ca0.33MnO3 and Pr0.7Sr0.3MnO3 via temperature and magnetic field. Acta Physica Sinica, 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [5] Luo Xiao-Dong, Di Guo-Qing. Ge and Nb co-doped TiO2 films with narrow band gap and low resistivity prepared by sputtering. Acta Physica Sinica, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [6] Chen Yan, Liu Lin, Liu Jian-Hua, Zhang Rui-Jun. Effect of high pressure treatment on microstructure and resistivity of Cu75.15Al24.85 alloy. Acta Physica Sinica, 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [7] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [8] Zhang Ming-Xiao, Tian Xue-Lei, Guo Feng-Xiang. Design and application of a device based on electromagnetic induction principle for electrical resistivity qualitative measurement of liquid and solid metals. Acta Physica Sinica, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [9] Fan Fei, Ban Chun-Yan, Wang Yang, Ba Qi-Xian, Cui Jian-Zhong. The resistivity evolution with temperature of 7050 aluminium alloy by different casting methods. Acta Physica Sinica, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [10] Jiang Dong-Dong, Du Jin-Mei, Gu Yan, Feng Yu-Jun. Resistivity of PZT 95/5 ferroelectric ceramic under shock wave compression. Acta Physica Sinica, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [11] Bie Shao-Wei, Jiang Jian-Jun, Ma Qiang, Du Gang, Yuan Lin, Di Yong-Jiang, Feng Ze-Kun, He Hua-Hui. Soft magnetic properties and microwave permeability of multilayer nanogranular films with high resistivity. Acta Physica Sinica, 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [12] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [13] Zhou Yun, Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang. Resistivity of polyaniline nanotubes doped with naphthalene sulfonic acid: dependence on moisture and ethanol. Acta Physica Sinica, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [14] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [15] Wang Yuan, Xu Ke-Wei. Cu-W Thin film characterized by surface fractal and resistivity. Acta Physica Sinica, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [16] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [17] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
    [18] YANG HONG-SHUN, YU MIN, LI SHI-YAN, LI PENG-CHENG, CHAI YI SHENG, ZHANG LIANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE THERMOPOWER AND RESISTIVITY OF A NEW SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [19] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [20] WANG QIANG, LU KUN-QUAN, LI YAN-XIANG. THE RELATIONSHIP BETWEEN ELECTRICAL RESISTIVITY, THERMOPOWER AND TEMPERATURE FOR LIQUID InSb. Acta Physica Sinica, 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
Metrics
  • Abstract views:  8041
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2018
  • Accepted Date:  18 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回