Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition

Xu Zi-Fei Yue Min-Nan Li Chun

Citation:

Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition

Xu Zi-Fei, Yue Min-Nan, Li Chun
cstr: 32037.14.aps.68.20191005
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Variational mode decomposition can improve traditional recursive algorithms, such as empirical mode decomposition, resulting modal aliasing and endpoint effects, but it has a significant influence on signal decomposition accuracy due to its pre-set parameters. The frequency corresponding to the peak value of the target signal power spectrum is proposed to initialize the center frequency required for the variational mode decomposition. The empirical mode decomposition and recursive model is used to improve the variational mode decomposition into the recursive mode algorithm based on the energy cutoff method. The group optimization algorithm optimally takes the penalty factor with bandwidth constraint ability to form an optimized recursive variational mode decomposition. By comparing with and analyzing empirical mode decomposition, integrating empirical mode decomposition and optimizing the computational accuracy of recursive variational mode decomposition in decomposing signals; studying traditional variational mode decomposition and optimizing recursive variational mode decomposition in dealing with actual vibration signals calculating rate, the results are obtained, showing that the optimized recursive variational mode decomposition has the highest accuracy when dealing with the target signal, and the correlation with the original component is 99.9%. Comparing with the integrated empirical mode decomposition, the signal can be decomposed into different frequency bands from low to high, and the physical meaning is clearer. No false modality is generated. When the actual nonlinear signal is processed, the optimized recursive variational mode decomposition does not need to preset the number of decomposition modes, and the calculation rate is 12.5%–18.5% higher than thay of the traditional variational mode decomposition.
      Corresponding author: Li Chun, lichunusst@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976131, 51676131), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51811530315), and the Shanghai Committee of Science and Technology, China (Grant No. 19060502200)
    [1]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 11

    [2]

    Banjade T P, Yu S, Ma J 2019 J. Seismol. 5 1

    [3]

    Yang F, Shen X, Wang Z 2018 Entropy 20 8

    [4]

    Lian J J, Zhuo L, Wang H J, Dong X F 2018 Mech. Syst. Sig. Process. 107 53Google Scholar

    [5]

    Klionskiy D M, Kaplun D I, Geppener V V 2018 Pattern Recognit Image Anal. 28 122Google Scholar

    [6]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [7]

    Qiu X, Ren Y, Suganthan P N, Amaratunga G A J 2017 Appl. Soft Comput. 54 246Google Scholar

    [8]

    Sweeney K T, Mcloone S F, Ward T E 2013 IEEE Trans. Biomed. Eng. 60 97Google Scholar

    [9]

    Guo Y, Naik G R, Nguyen H 2017 IEEE Eng. Med. Biol. Soc. 2013 6812

    [10]

    Wang Y, Liu F, Jiang Z S, He S L, Mo Q Y 2017 Mech. Syst. Sig. Process. 86 75Google Scholar

    [11]

    Xiong T, Bao Y, Zhongyi H U 2014 Neurocomputing 123 174Google Scholar

    [12]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Sig. Process. 62 531

    [13]

    Wang Y X, Markert R, Xiang J W, Zheng W G 2015 Mech. Syst. Sig. Process. 60 243

    [14]

    Yang F R, Bi X, Li C C, Liu C F, Tian T 2019 Measurement 140 1Google Scholar

    [15]

    郑小霞, 陈广宁, 任浩翰, 李东东 2019 振动与冲击 38 153

    Zheng X X, Chen G N, Ren H H, Li D D 2019 J. Vib. Shock 38 153

    [16]

    唐贵基, 王晓龙 2015 西安交通大学学报 49 73Google Scholar

    Tang G J, Wang X L 2015 J. Xi'an Jiaotong Univ. 49 73Google Scholar

    [17]

    刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友 2019 物理学报 68 028702Google Scholar

    Liu B, Hu E P, Zou X, Ding Y J, Qian S Y 2019 Acta Phys. Sin. 68 028702Google Scholar

    [18]

    Baldini G, Steri G, Dimc F, Giuliani R 2016 Sensors 16 818Google Scholar

    [19]

    Chen X J, Yang Y M, Cui Z X, Shen J 2019 Energy 174 1110Google Scholar

    [20]

    Cui J, Yu R Z, Zhao D B, Yang J Y, Ge W C, Zhou X M 2019 Appl. Energy 247 480Google Scholar

    [21]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. A 454 903Google Scholar

    [22]

    Damerval C, Meignen S, Valerie P 2005 IEEE Signal Process Lett. 12 701Google Scholar

    [23]

    Cheng J S, Yu D J, Yang Y 2006 Mech. Syst. Sig. Process. 20 817Google Scholar

    [24]

    Kennedy J, Eberhart R 1995 IEEE Int. Conf. Neural Networks 4 1942

    [25]

    吕中亮 2016 博士学位论文(重庆: 重庆大学)

    Lv Z L 2016 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [26]

    Mcfadden P D, Smith J D 1984 J. Sound Vib. 96 69Google Scholar

    [27]

    Smith W A, Randall R B 2015 Mech. Syst. Sig. Process. 64–65 100Google Scholar

    [28]

    Chen F, Shi T, Duan S K, Wang L D, Wu J G 2017 Signal Process. 142 423

    [29]

    Chen F, Li X Y, Duan S K, Wang L D, Wu J G 2018 Digit. Signal Prog. 81 16Google Scholar

    [30]

    Chen F, Shao X D 2017 Signal Process. 133 213Google Scholar

    [31]

    Shao X D, Chen F 2019 Signal Process. 160 237Google Scholar

  • 图 1  递归VMD流程

    Figure 1.  The recursive VMD diagram.

    图 2  基于PSO优化改进递归VMD参数流程

    Figure 2.  The process of using PSO to optimize recursive VMD parameter.

    图 3  合成信号及其分量 (a) 分量s1; (b) 分量s2; (c) 分量s3; (d) 合成信号f

    Figure 3.  Analog signal and its component waveform: (a) s1; (b) s2; (c) s3; (d) f.

    图 4  EMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) res

    Figure 4.  The results of EMD: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) res.

    图 5  EEMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) res

    Figure 5.  The results of EEMD: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) res.

    图 6  ORVMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3

    Figure 6.  The results of ORVMD: (a) IMF1; (b) IMF2; (c) IMF3.

    图 7  早期轴承内圈故障信号 (a) 时域; (b) 频谱

    Figure 7.  Early inner race fault diagnosis signal.

    图 8  故障信号EEMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9; (j) IMF10; (k) IMF11; (l) IMF12

    Figure 8.  The results of EEMD for fault signal: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9; (j) IMF10; (k) IMF11; (l) IMF12.

    图 9  故障信号ORVMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9

    Figure 9.  The results of ORVMD for fault diagnosis: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9.

    图 10  VMD与ORVMD计算耗时

    Figure 10.  The duration of calculation for VMD and ORVMD.

    表 1  ORVMD参数组合

    Table 1.  Parameter set of ORVMD.

    编号K, α编号K, α
    112, 121001412, 12400
    212, 129001512, 12000
    312, 118001612, 12000
    412, 119001713, 11900
    512, 118001812, 11900
    612, 127001912, 11400
    712, 121002012, 11900
    812, 131002113, 11900
    912, 121002212, 11900
    1012, 120002312, 12000
    1111, 120002412, 12000
    1211, 120002511, 12100
    1312, 13200
    DownLoad: CSV
  • [1]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 11

    [2]

    Banjade T P, Yu S, Ma J 2019 J. Seismol. 5 1

    [3]

    Yang F, Shen X, Wang Z 2018 Entropy 20 8

    [4]

    Lian J J, Zhuo L, Wang H J, Dong X F 2018 Mech. Syst. Sig. Process. 107 53Google Scholar

    [5]

    Klionskiy D M, Kaplun D I, Geppener V V 2018 Pattern Recognit Image Anal. 28 122Google Scholar

    [6]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [7]

    Qiu X, Ren Y, Suganthan P N, Amaratunga G A J 2017 Appl. Soft Comput. 54 246Google Scholar

    [8]

    Sweeney K T, Mcloone S F, Ward T E 2013 IEEE Trans. Biomed. Eng. 60 97Google Scholar

    [9]

    Guo Y, Naik G R, Nguyen H 2017 IEEE Eng. Med. Biol. Soc. 2013 6812

    [10]

    Wang Y, Liu F, Jiang Z S, He S L, Mo Q Y 2017 Mech. Syst. Sig. Process. 86 75Google Scholar

    [11]

    Xiong T, Bao Y, Zhongyi H U 2014 Neurocomputing 123 174Google Scholar

    [12]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Sig. Process. 62 531

    [13]

    Wang Y X, Markert R, Xiang J W, Zheng W G 2015 Mech. Syst. Sig. Process. 60 243

    [14]

    Yang F R, Bi X, Li C C, Liu C F, Tian T 2019 Measurement 140 1Google Scholar

    [15]

    郑小霞, 陈广宁, 任浩翰, 李东东 2019 振动与冲击 38 153

    Zheng X X, Chen G N, Ren H H, Li D D 2019 J. Vib. Shock 38 153

    [16]

    唐贵基, 王晓龙 2015 西安交通大学学报 49 73Google Scholar

    Tang G J, Wang X L 2015 J. Xi'an Jiaotong Univ. 49 73Google Scholar

    [17]

    刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友 2019 物理学报 68 028702Google Scholar

    Liu B, Hu E P, Zou X, Ding Y J, Qian S Y 2019 Acta Phys. Sin. 68 028702Google Scholar

    [18]

    Baldini G, Steri G, Dimc F, Giuliani R 2016 Sensors 16 818Google Scholar

    [19]

    Chen X J, Yang Y M, Cui Z X, Shen J 2019 Energy 174 1110Google Scholar

    [20]

    Cui J, Yu R Z, Zhao D B, Yang J Y, Ge W C, Zhou X M 2019 Appl. Energy 247 480Google Scholar

    [21]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. A 454 903Google Scholar

    [22]

    Damerval C, Meignen S, Valerie P 2005 IEEE Signal Process Lett. 12 701Google Scholar

    [23]

    Cheng J S, Yu D J, Yang Y 2006 Mech. Syst. Sig. Process. 20 817Google Scholar

    [24]

    Kennedy J, Eberhart R 1995 IEEE Int. Conf. Neural Networks 4 1942

    [25]

    吕中亮 2016 博士学位论文(重庆: 重庆大学)

    Lv Z L 2016 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [26]

    Mcfadden P D, Smith J D 1984 J. Sound Vib. 96 69Google Scholar

    [27]

    Smith W A, Randall R B 2015 Mech. Syst. Sig. Process. 64–65 100Google Scholar

    [28]

    Chen F, Shi T, Duan S K, Wang L D, Wu J G 2017 Signal Process. 142 423

    [29]

    Chen F, Li X Y, Duan S K, Wang L D, Wu J G 2018 Digit. Signal Prog. 81 16Google Scholar

    [30]

    Chen F, Shao X D 2017 Signal Process. 133 213Google Scholar

    [31]

    Shao X D, Chen F 2019 Signal Process. 160 237Google Scholar

Metrics
  • Abstract views:  18989
  • PDF Downloads:  319
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2019
  • Accepted Date:  11 September 2019
  • Available Online:  26 November 2019
  • Published Online:  05 December 2019
  • /

    返回文章
    返回