Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis

Deng Li Li Rui Wang Xin Fu Yuan-Guang

Citation:

Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis

Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang
PDF
HTML
Get Citation
  • Monte Carlo method is an ideal way to simulate criticality, shielding and nuclear detection. JMCT is a multipurpose 3D Mont Carlo (MC) neutron-photon-electron and coupled neutron /photon /electron transport code which is developed by IAPCM. The program is developed based on the combinatorial geometry parallel infrastructure JCOGIN and has the most functions of general Monte Carlo particle transport code, including the various variance reduction techniques. In addition, some new algorithms, such as Doppler broadening on-the-fly (OTF), uniform tally density (UTD), consistent adjoint driven importance sampling (CADIS), fast criticality search of boron concentration (FCSBC), the domain decomposition (DD), the two-level parallel computation of MPI and OpenMP, etc. have been developed, where the number of geometry zones, materials, tallies, depletion zones, memories and period of random number are big enough to simulate various extremely complicated problems. Also the JMCT is hybrid the discrete ordinate SN program JSNT to generate source biasing factors and weight window parameters for deep-penetration shielding problems. The input is based on the CAD modeling, and the result is a visualized output. The JMCT can provide technology support for radiation shielding design, reactor physics and criticality safe analysis. Especially, the JMCT is coupled depletion and thermal-hydraulic code for simulating the reactor feedback effect, including depletion, thermal feedback. In recent years, new function of γ-ray spectrum analysis has been developed. In this paper, the working principles of timing measure are introduced. The advanced calibration count is developed for distinguishing between inelastic γ-ray and capture γ-ray based on time bin tally. On the other hand, when neutron collides with nuclide, the secondary photon is labeled into the primary line photon and primary continuous photon, where energy of primary line photon does not change with the incident neutron energy, such as carbon spectral-line at 4.43 MeV and oxygen spectral-line at 6.13 MeV. The element components of detected object can be determined by the primary line photon. On the other hand, expect value estimator (EVE) is used to produce the secondary photons. The advantage of EVE does not leak any event even with a small probability which is important for detecting the hide exploder. However the shortage of the EVE results in producing a great number of photons with small weight. If all of these small weight photons are simulated one by one, a great amount of computation time and memory will be consumed. For avoiding this case, a new algorithm is design by coupling EVE and DE (direct estimator). The all of secondary photons from EVE only make the direct tally take a little computing time, then end the photon history and return to the DE production photon model (one photon production at most). Final, the total tally is a summation of EVE direct tally and DE scattering tally. The use of new algorithm to realize the analysis of γ-ray spectrum will increase only a little computing time. The numerical tests are done by using own Monte Carlo code JMCT. The correctness and validity of the algorithm are shown preliminarily.
      Corresponding author: Li Rui, li_rui@iapcm.ac.cn
    [1]

    Briesmeister J F 1997 MCNP-a General Monte Carlo Code for n-particle Transport Code US LA-12625-M

    [2]

    Gardner R P, Verghese K 1991 Nucl. Geophys. 5 4

    [3]

    Ullo J J 1986 Nucl. Sci. Eng. 92 228Google Scholar

    [4]

    Shyu C M, Gardner R P, Verghese K 1993 Nucl. Geophys. 7 241

    [5]

    Verghese K, Gardner R P, Mickael M, et al. 1998 Nucl. Geophys 2 3

    [6]

    Masayori I, Tooru K, Keiji K 2000 Nucl. Instrum. and Methods Phys. Res. 453 614Google Scholar

    [7]

    Li D, Gang L, Baoyin Z, et al. 2018 PHYSOR2018, Cancun, Mexico, April 22–26 2018

    [8]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [9]

    李刚, 邓力, 张宝印, 等 2016 物理学报 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, et al. 2016 Acta Phys. Sin. 65 052801Google Scholar

    [10]

    刘雄国, 邓力, 胡泽华, 等 2016 物理学报 65 092501Google Scholar

    Liu X G, Deng L, Hu Z H, et al. 2016 Acta Phys. Sin. 65 092501Google Scholar

    [11]

    Li D, Tao Y, Gang L, et al. 2014 PHYSOR2014, Kyoto, Japan, September 28–October 3 2014

    [12]

    付元光, 邓力, 李刚 2018 物理学报 67 172802Google Scholar

    Fu Y G, Deng L, Li G 2018 Acta Phys. Sin. 67 172802Google Scholar

    [13]

    蔡少辉 1996 物理 25 12

    Cai S H 1996 Physics 25 12

    [14]

    黄隆基 1985 放射性测井原理 (北京: 石油工业出版社)

    Huang L J 1985 Principle of Radiation Oil Well-logging (Beijing: Oil Industry Press) (in Chinese)

    [15]

    朱达智, 栾士文, 程宗华等 1984 碳氧比能谱测井 (北京: 石油工业出版社)

    Zhu Z D, Luan S W, Cheng Z H, et al. 1984 Energy Spectrum Well-logging Based on Ratio of Carbon and Oxygen (Beijing: Oil Industry Press) (in Chinese)

    [16]

    邓力 2001 博士学位论文 (西安: 西安交通大学)

    Deng L 2001 Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese)

    [17]

    Berger M J, Scltzer S M 1972 Nucl. Instrum. Methods 104 317Google Scholar

    [18]

    Jin Y, Gardner R P, Verghese K 1986 Nucl. Instrum. Methods 242 416Google Scholar

    [19]

    Li D, Shao H C, Zheng F H 1996 J. Nucl. Sci. Technol. 33 9

  • 图 1  碳氧比测井中子引发非弹性散射γ与俘获γ定时逻辑图

    Figure 1.  The timing diagram of neutron induced inelastic γ and capture γ in C/O well-logging.

    图 2  行李箱模型示意图

    Figure 2.  Sketch of luggage model.

    图 3  次级γ射线能谱计算结果比较 (a)次级γ原级线光子能谱; (b)原级连续光子与Compton散射能谱; (c) JMCT次级γ总能谱; (d) MCNP次级γ总能谱

    Figure 3.  Comparison of calculated result about energy spectra of secondary γ: (a) JMCT primary line γ; (b) JMCT Compton γ; (c) JMCT total γ; (d) MCNP total γ.

    图 4  JMCT与MCNP次级γ流时间谱比较

    Figure 4.  Comparison of secondary γ-fluent tine spectrum between JMCT and MCNP.

    表 1  H, C, N, O等核素发射俘获γ谱线和非弹性散射γ谱线能量

    Table 1.  Energy of spectrum line from inelastic γ and capture γ about H, C, N, O, etc.

    元素反应类型特征γ 谱线能量/MeV
    H辐射俘获2.2233
    C非弹性散射4.433
    N辐射俘获非弹性散射1.8848, 5.2692, 5.5534, 6.3224, 7.2991, 10.8290, 2.3128, 4.4444, 5.1059, 7.0280
    O非弹性散射2.7419, 3.6841, 6.1310, 6.9170, 7.1190
    F非弹性散射0.1090, 0.1971, 1.2358, 1.3480, 1.3565
    P辐射俘获非弹性散射2.1542, 3.5228, 3.9003, 4.6713, 6.7853, 1.2661, 2.2334
    S辐射俘获0.8411, 2.3797, 2.9311, 3.2208, 4.4308, 4.8698, 5.4205,
    Cl辐射俘获0.5167, 0.7884, 1.1647, 1.9509, 1.9591, 2.8639, 5.7153, 6.1109, 6.6195, 7.4138
    As辐射俘获非弹性散射6.2941, 6.8094, 7.0192, 0.2646, 0.2795, 0.5725
    Al辐射俘获非弹性散射0.9840, 2.9598, 4.1329, 4.2522, 7.7239, 0.8438, 1.0144, 2.2118
    Fe辐射俘获非弹性散射0.3522, 1.7251, 5.9203, 6.0185, 7.6311, 7.6455, 8.8860, 9.2980, 0.8468,
    1.2383, 1.4082, 1.8105, 2.1129, 2.5985
    DownLoad: CSV

    表 2  烈性炸药(TNT)和某些化学武器中所含元素的重量百分比

    Table 2.  Weight percentage of elements in some spirited detonators (TNT) and chemical weapons.

    元素TNT沙林/GB神经性
    毒气/VX
    芥子气/HD孁烂性
    毒气/L
    氢(H)2.27.19.75.01.0
    碳(C)37.034.349.430.211.4
    氮(N)18.55.2
    氧(O)42.322.912.0
    氟(F)13.6
    磷(P)22.111.6
    硫(S)12.020.1
    氯(Cl)44.751.3
    砷(As)36.1
    DownLoad: CSV

    表 3  JMCT与MCNP次级γ流计算结果比较

    Table 3.  Comparison of calculated results about secondary γ between JMCT and MCNP.

    程序原级线
    光子
    原级连续
    光子
    散射光子Jγ
    光子流
    偏差/%
    JMCT4.92519-704.34947-85.36014-70.4406
    MCNP5.38386-7标准解
    注: 偏差 = [Jγ(JMCT) – Jγ(MCNP)]/ Jγ(MCNP).
    DownLoad: CSV

    表 4  H, C, N, O瞬发γ计数及份额

    Table 4.  Count and percentage of prompt γ from H, C, N and O.

    元素计数份额比/%统计误差/%
    H3.02643 × 10–1100.56
    C1.77077 × 10–7360.49
    N1.11146 × 10–7230.12
    O2.03254 × 10–7410.18
    注: 偏差 = [Jγ(JMCT) – Jγ(MCNP)]/ Jγ(MCNP).
    DownLoad: CSV
  • [1]

    Briesmeister J F 1997 MCNP-a General Monte Carlo Code for n-particle Transport Code US LA-12625-M

    [2]

    Gardner R P, Verghese K 1991 Nucl. Geophys. 5 4

    [3]

    Ullo J J 1986 Nucl. Sci. Eng. 92 228Google Scholar

    [4]

    Shyu C M, Gardner R P, Verghese K 1993 Nucl. Geophys. 7 241

    [5]

    Verghese K, Gardner R P, Mickael M, et al. 1998 Nucl. Geophys 2 3

    [6]

    Masayori I, Tooru K, Keiji K 2000 Nucl. Instrum. and Methods Phys. Res. 453 614Google Scholar

    [7]

    Li D, Gang L, Baoyin Z, et al. 2018 PHYSOR2018, Cancun, Mexico, April 22–26 2018

    [8]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [9]

    李刚, 邓力, 张宝印, 等 2016 物理学报 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, et al. 2016 Acta Phys. Sin. 65 052801Google Scholar

    [10]

    刘雄国, 邓力, 胡泽华, 等 2016 物理学报 65 092501Google Scholar

    Liu X G, Deng L, Hu Z H, et al. 2016 Acta Phys. Sin. 65 092501Google Scholar

    [11]

    Li D, Tao Y, Gang L, et al. 2014 PHYSOR2014, Kyoto, Japan, September 28–October 3 2014

    [12]

    付元光, 邓力, 李刚 2018 物理学报 67 172802Google Scholar

    Fu Y G, Deng L, Li G 2018 Acta Phys. Sin. 67 172802Google Scholar

    [13]

    蔡少辉 1996 物理 25 12

    Cai S H 1996 Physics 25 12

    [14]

    黄隆基 1985 放射性测井原理 (北京: 石油工业出版社)

    Huang L J 1985 Principle of Radiation Oil Well-logging (Beijing: Oil Industry Press) (in Chinese)

    [15]

    朱达智, 栾士文, 程宗华等 1984 碳氧比能谱测井 (北京: 石油工业出版社)

    Zhu Z D, Luan S W, Cheng Z H, et al. 1984 Energy Spectrum Well-logging Based on Ratio of Carbon and Oxygen (Beijing: Oil Industry Press) (in Chinese)

    [16]

    邓力 2001 博士学位论文 (西安: 西安交通大学)

    Deng L 2001 Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese)

    [17]

    Berger M J, Scltzer S M 1972 Nucl. Instrum. Methods 104 317Google Scholar

    [18]

    Jin Y, Gardner R P, Verghese K 1986 Nucl. Instrum. Methods 242 416Google Scholar

    [19]

    Li D, Shao H C, Zheng F H 1996 J. Nucl. Sci. Technol. 33 9

  • [1] Zhang Xian, Liu Shi-Chang, Wei Jun-Xia, Li Shu, Wang Xin, Shangguan Dan-Hua. Monte Carlo global variance reduction method combining source bias and weight window. Acta Physica Sinica, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] Shangguan Dan-Hua, Ji Zhi-Cheng, Deng Li, Li Rui, Li Gang, Fu Yuan-Guang. New strategy for global tallying in Monte Carlo criticality calculation. Acta Physica Sinica, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [4] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] Li Shu. Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections. Acta Physica Sinica, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [6] ShangGuan Dan-Hua, Deng Li, Li Gang, Zhang Bao-Yin, Ma Yan, Fu Yuan-Guang, Li Rui, Hu Xiao-Li. Algorithm researches for efficient global tallying in criticality calculation of Monte Carlo method. Acta Physica Sinica, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [7] Shangguan Dan-Hua, Deng Li, Zhang Bao-Yin, Ji Zhi-Cheng, Li Gang. Efficient method of calculating Shannon entropy of non-static transport problem in message passing parallel programming environment. Acta Physica Sinica, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [8] Shangguan Dan-Hua, Li Gang, Deng Li, Zhang Bao-Yin, Li Rui, Fu Yuan-Guan. Modified uniform-fission-site algorithm in Monte Carlo simulation of reactor criticality problem. Acta Physica Sinica, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [9] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [10] Cong Dong-Liang, Xu Peng, Wang Ye-Bing, Chang Hong. Simulations using Monte Carlo method and expriment on dynamics of two-dimensional collimated thermal atomic beam of strontium. Acta Physica Sinica, 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [11] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [12] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [13] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [15] Zhang Peng-Fei, Su Zhao-Feng, Sun Jian-Feng, Yang Hai-Liang, Li Yong-Dong, Gao Yi, Sun Jiang, Wang Hong-Guang, Yin Jia-Hui, Liang Tian-Xue, Sun Feng-Ju, Wang Zhi-Guo. Numerical investigation of x-ray energy spectrum of rod-pinch diode. Acta Physica Sinica, 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [16] Zhao Xue-Feng, Li San-Wei, Jiang Gang, Wang Chuan-Ke, Li Zhi-Chao, Hu Feng, Li Chao-Guang. Monte Carlo simulation of hard X-ray producedby suprathermal electrons interactionwith golden hohlraum targets. Acta Physica Sinica, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [17] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [19] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [20] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
Metrics
  • Abstract views:  9232
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2020
  • Accepted Date:  23 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回