Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lower turning point convegence zone in deep water with an incomplete channel

Piao Sheng-Chun Li Zi-Yang Wang Xiao-Han Zhang Ming-Hui

Citation:

Lower turning point convegence zone in deep water with an incomplete channel

Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui
PDF
HTML
Get Citation
  • In a deep sea sound channel, rays will bend due to the sound speed profile, and convergence zone will occur when the rays are intensive. Transmission loss in the convergence zone is smaller and it is conducive to acoustic detection and communication. Therefore the study of acoustic characteristics in convergence zone is always the focus of deep-sea acoustics. A long-range sound propagation experiment is conducted in the South China Sea. An equivalent broadband explosive sound source of 1 kg is placed at a depth of 200 m, and the hydrophone receives the data at 3146 m far. The processing and analysis of the experimental data indicate that there is a convergence zone below the sound channel axis in the incomplete deep channel. Compared with the upper turning point convergence zone near the surface, this convergence zone has a high convergence gain at a long distance. The caustic lines of refracted type and refracted surface-refleted type are determined by means of ray-normal mode theory. It is found that the location of the deep convergence zone observed in the experiment is consistent with the position of the refracted caustic line. It is proved that the convergence zone is a lower turning point convergence zone formed by the superposition of a large number of normal modes in the same phase, and it has a convergence effect at a certain depth below the sound channel axis in the deep sea. The formation conditions of the convergence zone and the influence of sound source depth on the caustic structure of the convergence zone are studied. The comparisons of the transmission loss and the width between the upper and lower turning point convergence zone at a long distance aremade. The analysis shows that the convergence gain in the seventh lower turning point convergence zone is still no less than 10 dB. The influence of the vertical structure of sound velocity on the lower turning point convergence zone is studied. The theoretical analysis results are in good agreement with the experimental data.
      Corresponding author: Wang Xiao-Han, wangxiaohan@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11234002) and the Stability Support Program of the Bureau of National Defense Science, Technology and Industry, China (Grant No. JCKYS2020604SSJS004)
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175

    [2]

    Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1

    [3]

    Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157

    [4]

    Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838

    [5]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [6]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust. 1 28

    [8]

    张仁和 1982 声学学报 2 75

    Zhang R H 1982 Acta Acust. 2 75

    [9]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417

    [10]

    庄益夫, 张旭, 刘艳 2013 海洋通报 1 46

    Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46

    [11]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar

    [12]

    张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198

    Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198

    [13]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar

    [14]

    范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23

    Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23

    [15]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [16]

    Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar

    [17]

    Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar

    [18]

    Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar

    [19]

    Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar

    [20]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [21]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [22]

    Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar

    [23]

    White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar

    [24]

    Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121

    [25]

    Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.

    [26]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • 图 1  200 Hz时声压传播损失曲线与实验数据对比图[26]

    Figure 1.  Comparison diagram of transmission loss and experimental data at 200 Hz[26].

    图 2  实验海区声速剖面分布

    Figure 2.  Sound speed profile in experiment area.

    图 3  频率平均传播损失伪彩图

    Figure 3.  Pseudo color map of transmission loss with frequency averaged.

    图 4  三类声线示意图

    Figure 4.  Schematic diagram of three kinds of rays.

    图 5  RR型声线所形成的焦散线与传播损失伪彩图对比

    Figure 5.  Comparisons of caustics formed by refracted rays and pseudo color map of transmission loss.

    图 6  3146 m接收深度时RR型声线所对应的简正波归一化幅值

    Figure 6.  Normalized modal amplitudes, with receiver at 3146 m.

    图 7  $\Delta n$阶简正波相位差均值

    Figure 7.  The mean value of the phase difference of $\Delta n$ normal modes.

    图 8  不同声速剖面传播损失对比图 (a) 完整声道; (b) 不完整声道声源深度声速小于海底声速; (c) 不完整声道声源深度声速大于海底声速

    Figure 8.  Comparisons of transmission losses at different sound speed profile: (a) Complete channel; (b) incomplete channel with source depth sound speed less than bottom sound speed; (c) incomplete channel with source depth sound speed greater than bottom sound speed.

    图 9  不同声源深度时RR型声线所形成的焦散线结构示意图, 实线为正角度出射声线所形成的焦散线, 虚线为负角度出射声线所形成的焦散线 (a) 声源深度100 m; (b) 声源深度200 m; (c) 声源深度500 m

    Figure 9.  Schematic diagram of the structure of caustic lines formed by RR type rays at different source depths. The full line is the caustic line formed by the positive angle of departure, and the imaginary line is the caustic line formed by the negative angle of departure: (a) 100 m; (b) 200 m; (c) 500 m.

    图 10  接收深度4000 m传播损失图像 (a) 0−450 km; (b) 第7个下反转点会聚区

    Figure 10.  Transmission loss with receiver depth at 4000 m: (a) 0−450 km; (b) enlarge view of the 7th lower turning point convergence zone.

    图 11  127与3500 m接收深度传播损失对比 (a) 0−450 km; (b) 第7个会聚区处

    Figure 11.  Comparison of transmission losses with receiver depth at 127 m and 3500 m: (a) 0−450 km; (b) the 7th convergence zone.

    图 12  冬夏声速剖面下反转点会聚区焦散线对比图 (a) 夏季; (b) 冬季

    Figure 12.  Comparisons of caustics at lower turning point convergence zone in summer and winter: (a) Summer; (b) winter.

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175

    [2]

    Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1

    [3]

    Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157

    [4]

    Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838

    [5]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [6]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust. 1 28

    [8]

    张仁和 1982 声学学报 2 75

    Zhang R H 1982 Acta Acust. 2 75

    [9]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417

    [10]

    庄益夫, 张旭, 刘艳 2013 海洋通报 1 46

    Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46

    [11]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar

    [12]

    张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198

    Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198

    [13]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar

    [14]

    范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23

    Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23

    [15]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [16]

    Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar

    [17]

    Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar

    [18]

    Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar

    [19]

    Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar

    [20]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [21]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [22]

    Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar

    [23]

    White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar

    [24]

    Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121

    [25]

    Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.

    [26]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • [1] Kang Juan, Peng Zhao-Hui, He Li, Li Sheng-Hao, Yu Xiao-Tao. Low frequency inversion method based on multi-layer holizontal variation shallow seafloor model. Acta Physica Sinica, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation. Acta Physica Sinica, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] Bi Sizhao,  Peng Zhaohui,  Xie Zhimin,  Wang Guangxu,  Zhang Lingshan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [4] Bi Si-Zhao, Peng Zhao-Hui, Wang Guang-Xu, Xie Zhi-Min, Zhang Ling-Shan. Characteristics of long-range sound propagation in western Pacific. Acta Physica Sinica, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [5] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [6] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [7] Zhao Hai-Long, Xiao Bo, Wang Gang-Hua, Wang Qiang, Kan Ming-Xian, Duan Shu-Chao, Xie Long, Deng Jian-Jun. One-dimensional modeling and simulation of end loss effect in magnetized liner inertial fusion. Acta Physica Sinica, 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [8] Ren Bo, She Yan-Chao, Xu Xiao-Feng, Ye Fu-Qiu. Stability of optical soliton in symmetrical three-quantum-dot system under high-order effects. Acta Physica Sinica, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [9] Li Meng-Zhu, Li Zheng-Lin, Zhou Ji-Xun, Zhang Ren-He. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed. Acta Physica Sinica, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [10] Zhang Peng,  Li Zheng-Lin,  Wu Li-Xin,  Zhang Ren-He,  Qin Ji-Xing. Characteristics of convergence zone formed by bottom reflection in deep water. Acta Physica Sinica, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [11] Li Sheng-Hao, Li Zheng-Lin, Li Wen, Qin Ji-Xing. Horizontal refraction effects of seamounts on sound propagation in deep water. Acta Physica Sinica, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [12] Wen Yuan-Hui, Chen Yu-Jie, Yu Si-Yuan. Design of accelerating beams based on caustic method. Acta Physica Sinica, 2017, 66(14): 144210. doi: 10.7498/aps.66.144210
    [13] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [14] Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu. Array gain of conventional beamformer affected by structure of acoustic field in continental slope area. Acta Physica Sinica, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [15] Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong. Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave. Acta Physica Sinica, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [16] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [17] Sun Gang, Wu Yu-Hang, Zheng Ning, Wen Ping-Ping, Li Liang-Sheng, Shi Qing-Fan. Volume effect in the cyclic segregation of quasi two-dimensional binary granular mixture. Acta Physica Sinica, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [18] Yang Huan, Zhang Sui-Meng, Wu Xing-Ju. A theoretical study on final channel screening and exchange effects in large energy loss geometry. Acta Physica Sinica, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [19] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [20] ZHANG HAN-ZHUANG, GAO JIN-YUE. TRANSVERSE DIFFRACTION EFFECTS OF LIGHT FIELDS ON THE GAIN WITHOUT POPULATION INVERSION. Acta Physica Sinica, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
Metrics
  • Abstract views:  8613
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2020
  • Accepted Date:  18 September 2020
  • Available Online:  13 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回