Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of intrachain disorder on photoexcitation in conjugated polymer chains

Fu Cong Ye Meng-Hao Zhao Hui Chen Yu-Guang Yan Yong-Hong

Citation:

Effects of intrachain disorder on photoexcitation in conjugated polymer chains

Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong
PDF
HTML
Get Citation
  • The luminescence efficiency of conjugated polymers has been a central topic in the study of light emitting. The effect of disorder plays an important role in generating excitons after the conjugated polymers have been excited by photons. In this paper, by using the Su-Schriffer-Heeger model, which has been modified to include intrachain disorder and electron correlation, we investigate the effects of disorder on the photoexcitation, especially on the yield of excitons in a conjugated polymer chain. We adopt the multi-configurational time-dependent Hartree–Fock method to solve the multi-electron time-dependent Schrödinger equation and the Newtonian equation of motion for the lattice vibration. The results show that after the photoexcitation relaxation process, the products of the disordered polymer chain are qualitatively distinct from those of the pure polymer chain. While the pairs of polarons can be generated directly after the photoexcitation in a pure polymer chain, the disorder favors excitons as the products of the photoexcitation, and the yield of excitons depends crucially on the kind and strength of the disorder. Furthermore, the influences of the electron correlation and the conjugation length on the yield of excitons are also discussed. Specifically, we find that in the case of diagonal disorder, when the conjugation length is short and the diagonal disorder is weak, the excitons are mainly generated by the recombination of two lattice defects with a high yield of excitons which will be reduced as the conjugation length increases. The excitons tend to be generated directly with a low yield of excitons which is enlarged as the disorder gets stronger when the conjugation length is long or the diagonal disorder is strong. The on-site Coulomb repulsion favors the generation of excitons as well. The case of off-diagonal disorder is similar to that of diagonal disorder except that the on-site Coulomb potential favors the generation of excitons in the weak disorder regime but depresses the generation of excitons in the strong disorder regime. When both diagonal and off-diagonal disorders are considered, the yield of excitons is dominated by the off-diagonal disorder. We hope that our investigations can provide useful guidance and help for designing organic photoelectric materials and devices.
      Corresponding author: Zhao Hui, zhaoh@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474218, 11575116)
    [1]

    Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J 1977 J. Chem. Soc. Chem. Commun. 16 578

    [2]

    Heeger A J 2001 Rev. Mod. Phys. 73 681Google Scholar

    [3]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Dos Bradley D C, Santos D A D, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [4]

    Dodabalapur A, Katz H E, Torsi L, Haddon R C 1995 Science 269 1560Google Scholar

    [5]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789Google Scholar

    [6]

    Onsager L 1938 Phys. Rev. 54 554Google Scholar

    [7]

    Scher H, Rackovsky S 1984 J. Chem. Phys. 81 1994Google Scholar

    [8]

    Leng J M, Jeglinski S, Wei X, Benner R E, Vardeny Z V, Guo F, Mazumdar S 1994 Phys. Rev. Lett. 72 156Google Scholar

    [9]

    Kersting R, Lemmer U, Deussen M, Bakker H J, Mahrt R F, Kurz H, Arkhipov V I, Bässler H, Göbel E O 1994 Phys. Rev. Lett. 73 1440Google Scholar

    [10]

    Barth S, Bässler H 1997 Phys. Rev. Lett. 79 4445Google Scholar

    [11]

    Graupner W, Cerullo G, Lanzani G, Nisoli M, List E J W, Leising G, De Silvestri S 1998 Phys. Rev. Lett. 81 3259Google Scholar

    [12]

    Clarke T M, Durrant J R 2010 Chem. Rev. 110 6736Google Scholar

    [13]

    Sariciftci N S 1998 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) pp20−50

    [14]

    Moses D, Okumoto H, Lee C H, Heeger A J, Ohnishi T, Noguchi T 1996 Phys. Rev. B 54 4748

    [15]

    Moses D, Dogariu A, Heeger A J 2000 Chem. Phys. Lett. 316 356Google Scholar

    [16]

    Ruseckas A, Theander M, Andersson M R, Svensson M, Prato M, Inganäs O, Sundström V 2000 Chem. Phys. Lett. 322 136Google Scholar

    [17]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201(RGoogle Scholar

    [18]

    Moses D, Dogariu A, Heeger A J 2000 Phys. Rev. B 61 9373Google Scholar

    [19]

    De Sio A, Troiani F, Maiuri M, Réhault J, Sommer E, Lim J, Huelga S F, Plenio M B, Rozzi C A, Cerullo G, Molinari E, Lienau C 2016 Nat. Comm. 7 13742Google Scholar

    [20]

    Wang R, Yao Y, Zhang C F, Zhang Y D, Bin H J, Xue L W, Zhang Z G, Xie X Y, Ma H B, Wang X Y, Li Y F, Xiao M 2019 Nat. Commun. 10 398Google Scholar

    [21]

    Dong Y F, Nikolis V C, Talnack F, Chin Y C, Benduhn J, Londi G, Kublitski J, Zheng X J, Mannsfeld S C B, Spoltore D, Muccioli L, Li J, Blase X, Beljonne D, Kim J S, Bakulin A A, D′Avino G, Durrant J R, Vandewal K 2020 Nat. Commun. 11 4617Google Scholar

    [22]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407Google Scholar

    [23]

    Jaiswal M, Menon R 2006 Polym. Int. 55 1371Google Scholar

    [24]

    Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L 2007 Chem. Rev. 107 926Google Scholar

    [25]

    Shinar J, Shinar R 2008 J. Phys. D: Appl. Phys. 41 133001Google Scholar

    [26]

    Wang Y D, Zhang X G, Meng Y, Di B, Zhang Y L, An Z 2017 Org. Electron. 49 286Google Scholar

    [27]

    Sun Z, Li S, Xie S J, An Z 2019 J. Chem. Phys. C 123 21336Google Scholar

    [28]

    Menon A, Dong H P, Niazimbetova Z I, Rothberg L J, Galvin M E 2002 Chem. Mater. 14 3668Google Scholar

    [29]

    Konezny S J, Rothberg L J, Galvin M E, Smith D L 2010 Appl. Phys. Lett. 97 143305Google Scholar

    [30]

    Yuan X J, Dong X F, Li D M, Liu D S 2011 J. Chem. Phys. 134 244901Google Scholar

    [31]

    Yuan X J, Li D M, Yin S, Gao K, Cui B, Liu D S 2012 Org. Electron. 13 2094Google Scholar

    [32]

    Sariciftci N S, Heeger A J 1997 Handbook Organic Conductive Molecules Polymers (New York: Wiley) pp413–455

    [33]

    Li X X, Hou D, Chen G 2018 Org. Electron. 54 245Google Scholar

    [34]

    Wang Y D, Liu J J, Wang X R, Di B, Meng Y 2018 Europhys. Lett. 123 37003Google Scholar

    [35]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244101Google Scholar

    [36]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244102Google Scholar

    [37]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [38]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099Google Scholar

    [39]

    Brazovskii S A, Kirova N N 1981 Sov. Phys. JETP Lett. 33 4

    [40]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [41]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502Google Scholar

    [42]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310(RGoogle Scholar

    [43]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279Google Scholar

  • 图 1  加入对角无序后, 电子$ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $激发后晶格交错序参量$ \delta_i = (-1)^i(u_{i+1}-u_i)/2 $随时间的演化 (a) $ L = 64, \; \sigma_\varepsilon = 0.01 $ eV; (b) $ L = 128, \; \sigma_\varepsilon = 0.10 $ eV, 插图显示了$ \varepsilon_2^{\rm v} $上一个电子激发到导带$ \varepsilon_2^{\rm c} $后, 电子初始占据状态的示意图

    Figure 1.  Dynamical evolution of the staggered bond order parameter $ \delta_{i} = (-1)^{i}(u_{i+1}-u_{i})/2 $ with time for photoexcitation $ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $: (a) $ L = 64, \; \sigma_\varepsilon = 0.01 $ eV; (b) $ L = 128, \; \sigma_\varepsilon = 0.10 $ eV. The inset shows the initial electronic levels for a photoexcitation process of $ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $.

    图 2  激子的产率在不同链长和电子关联下随着对角无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $L = $$ 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Figure 2.  Dependence of the yield of the exciton on the strength of diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $.

    图 3  激子的产率在不同链长和电子关联下随着非对角无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\upsilon}\rightarrow\varepsilon_2^c $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $L = 128, $$ \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Figure 3.  Dependence of the yield of the exciton on the strength of off-diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $L = $$ 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $.

    图 4  两种无序同时存在时, 激子的产率在不同链长和电子关联下随着无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $L = 96, $$ \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Figure 4.  Dependence of the yield of the exciton on the strength of both diagonal and off-diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c}$.

  • [1]

    Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J 1977 J. Chem. Soc. Chem. Commun. 16 578

    [2]

    Heeger A J 2001 Rev. Mod. Phys. 73 681Google Scholar

    [3]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Dos Bradley D C, Santos D A D, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [4]

    Dodabalapur A, Katz H E, Torsi L, Haddon R C 1995 Science 269 1560Google Scholar

    [5]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789Google Scholar

    [6]

    Onsager L 1938 Phys. Rev. 54 554Google Scholar

    [7]

    Scher H, Rackovsky S 1984 J. Chem. Phys. 81 1994Google Scholar

    [8]

    Leng J M, Jeglinski S, Wei X, Benner R E, Vardeny Z V, Guo F, Mazumdar S 1994 Phys. Rev. Lett. 72 156Google Scholar

    [9]

    Kersting R, Lemmer U, Deussen M, Bakker H J, Mahrt R F, Kurz H, Arkhipov V I, Bässler H, Göbel E O 1994 Phys. Rev. Lett. 73 1440Google Scholar

    [10]

    Barth S, Bässler H 1997 Phys. Rev. Lett. 79 4445Google Scholar

    [11]

    Graupner W, Cerullo G, Lanzani G, Nisoli M, List E J W, Leising G, De Silvestri S 1998 Phys. Rev. Lett. 81 3259Google Scholar

    [12]

    Clarke T M, Durrant J R 2010 Chem. Rev. 110 6736Google Scholar

    [13]

    Sariciftci N S 1998 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) pp20−50

    [14]

    Moses D, Okumoto H, Lee C H, Heeger A J, Ohnishi T, Noguchi T 1996 Phys. Rev. B 54 4748

    [15]

    Moses D, Dogariu A, Heeger A J 2000 Chem. Phys. Lett. 316 356Google Scholar

    [16]

    Ruseckas A, Theander M, Andersson M R, Svensson M, Prato M, Inganäs O, Sundström V 2000 Chem. Phys. Lett. 322 136Google Scholar

    [17]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201(RGoogle Scholar

    [18]

    Moses D, Dogariu A, Heeger A J 2000 Phys. Rev. B 61 9373Google Scholar

    [19]

    De Sio A, Troiani F, Maiuri M, Réhault J, Sommer E, Lim J, Huelga S F, Plenio M B, Rozzi C A, Cerullo G, Molinari E, Lienau C 2016 Nat. Comm. 7 13742Google Scholar

    [20]

    Wang R, Yao Y, Zhang C F, Zhang Y D, Bin H J, Xue L W, Zhang Z G, Xie X Y, Ma H B, Wang X Y, Li Y F, Xiao M 2019 Nat. Commun. 10 398Google Scholar

    [21]

    Dong Y F, Nikolis V C, Talnack F, Chin Y C, Benduhn J, Londi G, Kublitski J, Zheng X J, Mannsfeld S C B, Spoltore D, Muccioli L, Li J, Blase X, Beljonne D, Kim J S, Bakulin A A, D′Avino G, Durrant J R, Vandewal K 2020 Nat. Commun. 11 4617Google Scholar

    [22]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407Google Scholar

    [23]

    Jaiswal M, Menon R 2006 Polym. Int. 55 1371Google Scholar

    [24]

    Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L 2007 Chem. Rev. 107 926Google Scholar

    [25]

    Shinar J, Shinar R 2008 J. Phys. D: Appl. Phys. 41 133001Google Scholar

    [26]

    Wang Y D, Zhang X G, Meng Y, Di B, Zhang Y L, An Z 2017 Org. Electron. 49 286Google Scholar

    [27]

    Sun Z, Li S, Xie S J, An Z 2019 J. Chem. Phys. C 123 21336Google Scholar

    [28]

    Menon A, Dong H P, Niazimbetova Z I, Rothberg L J, Galvin M E 2002 Chem. Mater. 14 3668Google Scholar

    [29]

    Konezny S J, Rothberg L J, Galvin M E, Smith D L 2010 Appl. Phys. Lett. 97 143305Google Scholar

    [30]

    Yuan X J, Dong X F, Li D M, Liu D S 2011 J. Chem. Phys. 134 244901Google Scholar

    [31]

    Yuan X J, Li D M, Yin S, Gao K, Cui B, Liu D S 2012 Org. Electron. 13 2094Google Scholar

    [32]

    Sariciftci N S, Heeger A J 1997 Handbook Organic Conductive Molecules Polymers (New York: Wiley) pp413–455

    [33]

    Li X X, Hou D, Chen G 2018 Org. Electron. 54 245Google Scholar

    [34]

    Wang Y D, Liu J J, Wang X R, Di B, Meng Y 2018 Europhys. Lett. 123 37003Google Scholar

    [35]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244101Google Scholar

    [36]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244102Google Scholar

    [37]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [38]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099Google Scholar

    [39]

    Brazovskii S A, Kirova N N 1981 Sov. Phys. JETP Lett. 33 4

    [40]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [41]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502Google Scholar

    [42]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310(RGoogle Scholar

    [43]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279Google Scholar

  • [1] Shi Ying, Li Yao, Zhou Hai-Tao, Chen Rui-Yun, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Real-time measurement of dynamic evolution of absorption and emission properties of chromophores in single conjugated polymer molecules. Acta Physica Sinica, 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [2] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [3] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [4] Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing. Dynamics of polarons in organic conjugated polymers with impurity ions. Acta Physica Sinica, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [6] Wang Wen-Jing, Meng Rui-Xuan, Li Yuan, Gao Kun. Dynamical study on the stimulated absorption and emission in a coujugated polymer. Acta Physica Sinica, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [7] Wu Zhen-Hua, Li Hua, Yan Liang-Xing, Liu Bing-Can, Tian Qiang. Polaron effect in a GaAs film: the fraction-dimensional space approach. Acta Physica Sinica, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [8] Di Bing, Wang Ya-Dong, Zhang Ya-Lin. The effect of interchain coupling on inelastic scattering of oppositely charged polarons. Acta Physica Sinica, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [9] Li Dong-Mei, Yuan Xiao-Juan, Zhou Jia-Qiang. Effects of intrachain disorder on polaron transport in conjugated polymer. Acta Physica Sinica, 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [10] Yi Ding, Qin Wei, Xie Shi-Jie. Investigation of polarons in perovskite manganites. Acta Physica Sinica, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] Niu Qiao-Li, Zhang Yong, Fan Guang-Han. High efficiency phosphorescence light-emitting diodes with conjugated polymer host. Acta Physica Sinica, 2009, 58(12): 8630-8634. doi: 10.7498/aps.58.8630
    [12] Peng Rui-Xiang, Chen Chong, Shen Wei, Wang Ming-Tai, Guo Ying, Geng Hong-Wei. Amorphous/crystalline blend effects on the performance of polymer-based photovoltaic cells. Acta Physica Sinica, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [13] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [14] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [15] Zhao Feng-Qi, Zhou Bing-Qing. Energy levels of a polaron in wurtzite nitride parabolic quantum well under external electric field. Acta Physica Sinica, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [16] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [17] Wang Lu-Xia, Zhang Da-Cheng, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Dynamics of polarons and bipolarons in nondegenerate polymers. Acta Physica Sinica, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [18] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [19] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. POLARONS AND BIPOLARONS IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
Metrics
  • Abstract views:  4093
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2020
  • Accepted Date:  15 January 2021
  • Available Online:  20 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回