-
The prediction of nonlinear and non-stationary systems is a research topic of great scientific significance. In some recent work the convergent cross mapping (CCM) algorithm is used to detect the causal relationship between variables. In the CCM algorithm, the points close to each other in the phase space have similar trends and trajectories in time. Therefore, this method can be applied to the prediction of experimental researches of nonlinear and non-stationary systems. Therefore, in this paper the CCM algorithm is applied to the prediction of the Lorenz system and the actual climate time series, and the effects of different phase space reconstruction methods on the prediction skill are investigated. The preliminary results are as follows. 1) No matter whether the ideal Lorenz model or the actual climate series, of the three reconstruction phase space methods of univariate, multivariate, and multiview embedding method, the multiview embedding method is the best predictive skill, indicating that for a given length of time series, the more the information contained in the reconstructed phase space, the stronger its predictive ability is. 2) Adding the data of NAM (northern hemisphere annular mode) to the reconstructed phase space of SAT (surface air temperature) can improve the prediction effect on prediction of SAT. Using the univariable, multivariable, and multiview embedding method for implementing prediction, the characteristics of common information in the complex system are considered. On condition that the length of the time series is fixed, the complexity of the dynamic system can be used to increase the information of the system. Based on causality detection, through the extraction of quantitative information of data, a novel idea for the improvement of predictive skills in nonlinear and non-stationary systems can be obtained.
-
Keywords:
- convergent cross mapping /
- causality /
- nonlinear prediction /
- nonlinear system
[1] 魏凤英 2006 应用气象学报 6 736Google Scholar
Wei F Y 2006 J. Appl. Meteor. Sci. 6 736Google Scholar
[2] 丁瑞强, 李建平 2009 气象学报 67 241Google Scholar
Ding R Q, Li J P 2009 Acta Meteor Sin. 67 241Google Scholar
[3] Li H R, Jin F F, Song L C 2017 J. Meteorol. Res. 31 204Google Scholar
[4] 丁一汇 2004 气象 30 11Google Scholar
Ding Y H 2004 Meteor. Mon. 30 11Google Scholar
[5] 徐邦琪, 臧钰歆, 朱志伟 2020 大气科学学报 43 212
Hsu P C, Zang Y X, Zhu Z W 2020 Trans. Atmos. Sci. 43 212
[6] 杨培才, 卞建春, 王革丽, 周秀骥 2003 科学通报 48 1470Google Scholar
Yang P C, Bian J C, Wang G L, Zhou X J 2003 Chin. Sci. Bull. 48 1470Google Scholar
[7] Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712Google Scholar
[8] Takens F 1981 Lect. Notes Math. 898 366
[9] Farmer J D, Sidorowich J 1987 Phys. Rev. Lett. 59 845Google Scholar
[10] Casdagli M 1989 Phys. D 35 335Google Scholar
[11] Yang P C, Zhou X J, Bian J C 2000 J. Geophys. Res. 105 12253Google Scholar
[12] Wang G L, Yang P C, Lv D R 2004 Adv. Atmos. Sci. 21 296Google Scholar
[13] 潘昕浓, 王革丽, 杨培才 2017 物理学报 66 080501Google Scholar
Pan X N, Wang G L, Yang P C 2017 Acta Phys. Sin. 66 080501Google Scholar
[14] 陈潇潇, 王革丽, 金莲姬 2015 中国环境科学 35 694
Chen X X, Wang G L, Jin L J 2015 China Environ. Sci. 35 694
[15] 杨培才, 周秀骥 2005 气象学报 63 556Google Scholar
Yang P C, Zhou X J 2005 Acta Meteor. Sin. 63 556Google Scholar
[16] Verdes P F, Granitto P M, Navone H D, Ceccatto H A 2001 Phys. Rev. Lett. 87 124101Google Scholar
[17] Wiskott L 2003 Neural Comput. 15 2147Google Scholar
[18] Verdes P F 2007 Phys. Rev. Lett. 99 1
[19] Gunturkun U 2010 Phys. D. 239 1095Google Scholar
[20] Wiener N (Beckenbach E F Ed.) 1956 Modern Mathermatics for Engineers p165
[21] Granger C W J 1969 Econometrica 37 424Google Scholar
[22] Barnett L, Barrett A B, Seth A K 2009 Phys. Rev. Lett. 103 238701Google Scholar
[23] Bressler, Steven L, Seth A K 2011 NeuroImage 58 323Google Scholar
[24] Sugihara G, May R M, Ye H 2012 Science 338 496Google Scholar
[25] Deyle E R, Maher M C, Hernandez R D 2016 PNAS 113 13081Google Scholar
[26] Runge J, Bathiany S, Bollt E 2019 Nat. Commun. 10 2553Google Scholar
[27] Tsonis A A, Deyle E R, May R M 2015 PNAS 112 3253Google Scholar
[28] Zhang N N, Wang G L, Tsonis A A 2019 Climate DyNAMics 52 3175Google Scholar
[29] Sugihara G, May R M 1990 Nature 344 734Google Scholar
[30] Dixon P A, Milicich M J, Sugihara G 2001 Nonlinear Dynamics and Statistics (Boston: Birkhauser) p339
[31] Sugihara G 1994 Philos. Trans. Royal Soc. 348 477
[32] Dixon P A, Milicich M J, Sugihara G 1999 Science 283 1528Google Scholar
[33] Ye H, Sugihara G 2016 Science 335 922
[34] Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar
-
图 4 (a)单变量嵌入法和在目标变量中加入NAM信号后的预测结果; (b)多变量嵌入法的预测结果(黑色圆圈代表仅利用SAT序列进行预测, 红色三角代表加入NAM信号后)
Figure 4. (a) Univariate embedding method and prediction result after adding NAM signal to the target variable; (b) prediction result of multivariate embedding method (black circle represents prediction using only SAT sequence, red triangle represents after adding NAM signal).
表 1 多种嵌入方法的预测结果
Table 1. Predicted results of multiple embedding methods.
Embedding method Reconstructing phase space with SAT only Adding NAM to SAT to reconstruct the phase space ρ MAE RMSE ρ MAE RMSE Univariate 0.12 1.06 1.30 0.18 0.97 1.18 Multivariate 0.15 1.02 1.27 0.26 0.95 1.12 Multi-angle 0.66 0.62 0.75 0.79 0.59 0.66 -
[1] 魏凤英 2006 应用气象学报 6 736Google Scholar
Wei F Y 2006 J. Appl. Meteor. Sci. 6 736Google Scholar
[2] 丁瑞强, 李建平 2009 气象学报 67 241Google Scholar
Ding R Q, Li J P 2009 Acta Meteor Sin. 67 241Google Scholar
[3] Li H R, Jin F F, Song L C 2017 J. Meteorol. Res. 31 204Google Scholar
[4] 丁一汇 2004 气象 30 11Google Scholar
Ding Y H 2004 Meteor. Mon. 30 11Google Scholar
[5] 徐邦琪, 臧钰歆, 朱志伟 2020 大气科学学报 43 212
Hsu P C, Zang Y X, Zhu Z W 2020 Trans. Atmos. Sci. 43 212
[6] 杨培才, 卞建春, 王革丽, 周秀骥 2003 科学通报 48 1470Google Scholar
Yang P C, Bian J C, Wang G L, Zhou X J 2003 Chin. Sci. Bull. 48 1470Google Scholar
[7] Packard N H, Crutchfield J P, Farmer J D, Shaw R S 1980 Phys. Rev. Lett. 45 712Google Scholar
[8] Takens F 1981 Lect. Notes Math. 898 366
[9] Farmer J D, Sidorowich J 1987 Phys. Rev. Lett. 59 845Google Scholar
[10] Casdagli M 1989 Phys. D 35 335Google Scholar
[11] Yang P C, Zhou X J, Bian J C 2000 J. Geophys. Res. 105 12253Google Scholar
[12] Wang G L, Yang P C, Lv D R 2004 Adv. Atmos. Sci. 21 296Google Scholar
[13] 潘昕浓, 王革丽, 杨培才 2017 物理学报 66 080501Google Scholar
Pan X N, Wang G L, Yang P C 2017 Acta Phys. Sin. 66 080501Google Scholar
[14] 陈潇潇, 王革丽, 金莲姬 2015 中国环境科学 35 694
Chen X X, Wang G L, Jin L J 2015 China Environ. Sci. 35 694
[15] 杨培才, 周秀骥 2005 气象学报 63 556Google Scholar
Yang P C, Zhou X J 2005 Acta Meteor. Sin. 63 556Google Scholar
[16] Verdes P F, Granitto P M, Navone H D, Ceccatto H A 2001 Phys. Rev. Lett. 87 124101Google Scholar
[17] Wiskott L 2003 Neural Comput. 15 2147Google Scholar
[18] Verdes P F 2007 Phys. Rev. Lett. 99 1
[19] Gunturkun U 2010 Phys. D. 239 1095Google Scholar
[20] Wiener N (Beckenbach E F Ed.) 1956 Modern Mathermatics for Engineers p165
[21] Granger C W J 1969 Econometrica 37 424Google Scholar
[22] Barnett L, Barrett A B, Seth A K 2009 Phys. Rev. Lett. 103 238701Google Scholar
[23] Bressler, Steven L, Seth A K 2011 NeuroImage 58 323Google Scholar
[24] Sugihara G, May R M, Ye H 2012 Science 338 496Google Scholar
[25] Deyle E R, Maher M C, Hernandez R D 2016 PNAS 113 13081Google Scholar
[26] Runge J, Bathiany S, Bollt E 2019 Nat. Commun. 10 2553Google Scholar
[27] Tsonis A A, Deyle E R, May R M 2015 PNAS 112 3253Google Scholar
[28] Zhang N N, Wang G L, Tsonis A A 2019 Climate DyNAMics 52 3175Google Scholar
[29] Sugihara G, May R M 1990 Nature 344 734Google Scholar
[30] Dixon P A, Milicich M J, Sugihara G 2001 Nonlinear Dynamics and Statistics (Boston: Birkhauser) p339
[31] Sugihara G 1994 Philos. Trans. Royal Soc. 348 477
[32] Dixon P A, Milicich M J, Sugihara G 1999 Science 283 1528Google Scholar
[33] Ye H, Sugihara G 2016 Science 335 922
[34] Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar
Catalog
Metrics
- Abstract views: 4457
- PDF Downloads: 96
- Cited By: 0