Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cat-eye retroreflectors based large-dynamic-range alignment-free laser

Sheng Quan Geng Jing-Ni Wang Ai-Hua Wang Meng Qi Yue Liu Jun-Jie Fu Shi-Jie Shi Wei Yao Jian-Quan

Citation:

Cat-eye retroreflectors based large-dynamic-range alignment-free laser

Sheng Quan, Geng Jing-Ni, Wang Ai-Hua, Wang Meng, Qi Yue, Liu Jun-Jie, Fu Shi-Jie, Shi Wei, Yao Jian-Quan
PDF
HTML
Get Citation
  • Lasers with cavities consisting of retroreflecting elements can give the potential for large-dynamic-range alignment-free operation, which makes the important applications in adaptive wireless laser power transfer/communication possible. In such an emerging approach based on resonant laser beam in the cavity, the laser is delivered to the photovoltaic cell for charging application (or photodiode for communication application) at the receiver automatically, without the necessity of positioning and aiming the receiver in conventional laser wireless power transfer techniques. The laser capable of operating alignment-free efficiently across large-dynamic-range is essential for the application. In this work, the requirements for the dynamic range of alignment-free operation are summarized. An alignment-free laser with a cavity consisting of cat-eye retroreflectors is designed, and a large alignment-free dynamic range as never before is experimentally demonstrated. Telescope system in the laser cavity is adopted to suppress the beam expansion to enhance the working distance between the laser transmitter and the receiver. Coupled cavity scheme is used to reduce the laser intensity between the transmitter and the receiver for laser safety. By calculating the stability zone of the laser cavity, it is found that the stability zone of the receiver cat-eye distance is quite narrow. Hence, the laser operation is very sensitive to the defocusing of the cat eye defocusing. Moreover, the cat eye defocusing induced by optical aberrations of spherical aberration and field curvature can be rather serious, when the long working distance results in a large beam size and the angle of incidence is large, hence limiting the effective working distance and the field of view of the alignment-free laser significantly. In the experiment, the improved optical designs with the aberrations compensation are adopted for large-dynamic-range alignment-free operation. The end-pumped Nd:GdVO4 laser at 1063 nm can deliver over 5-W output within a working distance range of 1–5 m, and a receiver field of view of ±30°, without cavity realignment. The transmitter field of view reaching 4.6° (full width at half maximum) at a working distance of 5 m is also realized, with a corresponding receiver transverse movement range of 40 cm. Our work clarifies the optimizing criteria of the large-dynamic-range alignment-free laser based on cat-eye retroreflectors.
      Corresponding author: Fu Shi-Jie, shijie_fu@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975146, 62105240, 62075159).
    [1]

    Jin K, Zhou W Y 2019 IEEE Trans. Power Electron. 34 3842Google Scholar

    [2]

    Liu Q W, Wu J, Xia P F, Zhao S J, Yang Y P, Chen W, Hanzo L 2016 IEEE Veh. Technol. Mag. 11 36Google Scholar

    [3]

    Alpert O, Paschotta R 2016 US Patent 9312660 B2

    [4]

    Alpert O, Ronen E, Nahmias O, Mor O R, Golan L, Sagi R 2019 US Patent 10193297 B2

    [5]

    Liu Q W, Xiong M L, Liu M Q, Jiang Q W, Fang W, Bai Y F 2022 IEEE Internet Things J. 9 13876Google Scholar

    [6]

    Lim J Y, Khwaja T S, Ha J Y 2019 Opt. Express 27 A924Google Scholar

    [7]

    Wang W, Gao Y X, Sun D, Du X, Guo J, Liang X Y 2021 Chin. Opt. Lett. 19 111403Google Scholar

    [8]

    Zhang Z, Zhang J W, Zhou Y L, Zhang X, Li Z W, Zhang J Y, Zhang J, Gong Y X, Liu T J, Mu J F, Ning Y Q, Qin L, Wang L J 2022 Opt. Express 30 22364Google Scholar

    [9]

    Javed N, Nguyen N L, Naqvi S F A, Ha J Y 2022 Opt. Express 30 33767Google Scholar

    [10]

    Huang J J, Li X, Zhang J P 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications, Chongqing, China, June 4–7, 2021 p1

    [11]

    Sheng Q, Wang M, Ma H C, Qi Y, Liu J J, Xu D G, Shi W, Yao J Q 2021 Opt. Express 29 34269Google Scholar

    [12]

    Sheng Q, Wang A H, Wang M, Ma H C, Qi Y, Liu J J, Wang S J, Xu D G, Shi W, Yao J Q 2022 Opt. Laser Technol. 151 108011Google Scholar

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [14]

    Sheng Q, Wang A H, Ma Y Y, Wang S J, Wang M, Shi Z, Liu J J, Fu S J, Shi W, Yao J Q, Omatsu T 2022 Photoni X 3 4Google Scholar

    [15]

    刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨 2022 物理学报 71 014204Google Scholar

    Liu J J, Sheng Q, Wang M, Zhang J X, Geng X N, Shi Z, Wang A H, Shi W, Yao J Q 2022 Acta Phys. Sin. 71 014204Google Scholar

    [16]

    Wang M, Ma Y Y, Sheng Q, He X, Liu J J, Shi W, Yao J Q, Omatsu T 2021 Opt. Express 29 27783Google Scholar

    [17]

    Sheng Q, Wang A H, Qi Y, Wang M, Shi Z, Geng J N, Liu J J, Wang S J, Fu S J, Shi W, Yao, J Q 2022 Results Phys. 37 105558Google Scholar

    [18]

    刘俊杰, 齐岳, 盛泉, 王思佳, 王盟, 徐德刚, 史伟, 姚建铨 2022 红外与激光工程 51 20211108Google Scholar

    Liu J J, Qi Y, Sheng Q, Wang S J, Wang M, Xu D G, Shi W, Yao J Q 2022 Infrared Laser Eng. 51 20211108Google Scholar

    [19]

    Liu J J, Wang A H, Sheng Q, Qi Y, Wang S J, Wang M, Xu D G, Fu S J, Shi W, Yao J Q 2022 Chin. Opt. Lett. 20 031407Google Scholar

    [20]

    Lumb M P, Meitl M, Wilson J, Bonafede S, Burroughs S, Forbes D V, Bailey C G, Hoven N M, Hoheisel R, Yakes M K, Polly S J, Hubbard S M, Walters R J 2014 IEEE 40th Photovoltaic Specialist Conference, Denve, USA, June 8–13, 2014 p0491

  • 图 1  基于跟瞄的激光无线传能(a)和谐振激光自适应无线传能(b)示意图

    Figure 1.  Schematic of the (a) conventional laser power transfer based on acquisition, tracking, and pointing (ATP) system and (b) adaptive resonant beam wireless laser power transfer/communication.

    图 2  免调试激光器的工作距离、接收端视场和发射端视场

    Figure 2.  Working distance, receiver FoV and transmitter FoV of the alignment-free laser.

    图 3  免调试激光器光路示意图 (a)接收端位于发射端光轴上且朝向发射端; (b)接收端相对发射端光轴存在偏离, 且朝向与振荡光路存在夹角

    Figure 3.  Schematic of the alignment-free laser: (a) The receiver and the transmitter are on the optical axes of each other; (b) the receiving end deviates from the optical axis of the transmitting end, and the orientation has an angle with the oscillating optical path.

    图 4  不同工作距离d6下接收端猫眼间距d7的稳区

    Figure 4.  Stability zones of receiver CER distance d7 as a function of working distance d6.

    图 5  使用f = 25 mm的K9平凸球面透镜时球差导致的猫眼逆反射器离焦

    Figure 5.  CER defocusing induced by the spherical aberration of a K9 plano-convex spherical lens with f = 25 mm.

    图 6  使用f = 25 mm的K9平凸透镜时场曲导致的猫眼逆反射器离焦

    Figure 6.  CER defocusing induced by the field curvature of a K9 plano-convex lens with f = 25 mm.

    图 7  不同接收端透镜球差条件下激光器的工作距离特性实验结果

    Figure 7.  The experimental working distance behavior of the laser using receiver lenses with different SA.

    图 8  不同接收端透镜场曲条件下的接收端视场特性实验结果

    Figure 8.  The experimental receiver FoVs with and without FC of the receiver CER compensated.

    表 1  计算和实验中所用参数

    Table 1.  Parameters used in the experiment and calculation.

    LensesFocal length/mmDistancesLength/mm
    L010d123.8
    L124.6d223
    L224.6d323.8
    L348.3d423
    L425, 50 (51.8)d549.1
    ft500d61000—5000
    DownLoad: CSV

    表 2  面向谐振激光自适应无线传能/通信应用的免调试激光器典型实验结果

    Table 2.  Typical experimental results of alignment-free lasers for adaptive resonant beam charging/communication applications

    YearRetro-
    reflector
    Laser gain
    medium
    Output power/WOptical efficiency/%Working distance/mReceiver FoV/(°)Transmitter FoV/(°)
    2019[6]Corner cubeSOA0.001716.6°
    (only one dimension)
    2021[7]CERNd:YVO4 disk>100.15±13°
    @ 0.15 m
    ±8.3°@0.15 m
    (0 output)
    2022[8]Ball lensEDFA0.430Unlimited
    2022[5]CERNd:YVO4 disk>10~15<3±5.1°@2 m
    (0 output)
    2022[9]CEROptically pumped VECSEL0.8630.5721.37°@0.5 m
    0.47°@2 m
    2021[10]CER0.0122
    Our workCERBulk Nd:GdVO4>5>30>5±30°@5 m4.6°@5 m
    (half maximum)
    DownLoad: CSV
  • [1]

    Jin K, Zhou W Y 2019 IEEE Trans. Power Electron. 34 3842Google Scholar

    [2]

    Liu Q W, Wu J, Xia P F, Zhao S J, Yang Y P, Chen W, Hanzo L 2016 IEEE Veh. Technol. Mag. 11 36Google Scholar

    [3]

    Alpert O, Paschotta R 2016 US Patent 9312660 B2

    [4]

    Alpert O, Ronen E, Nahmias O, Mor O R, Golan L, Sagi R 2019 US Patent 10193297 B2

    [5]

    Liu Q W, Xiong M L, Liu M Q, Jiang Q W, Fang W, Bai Y F 2022 IEEE Internet Things J. 9 13876Google Scholar

    [6]

    Lim J Y, Khwaja T S, Ha J Y 2019 Opt. Express 27 A924Google Scholar

    [7]

    Wang W, Gao Y X, Sun D, Du X, Guo J, Liang X Y 2021 Chin. Opt. Lett. 19 111403Google Scholar

    [8]

    Zhang Z, Zhang J W, Zhou Y L, Zhang X, Li Z W, Zhang J Y, Zhang J, Gong Y X, Liu T J, Mu J F, Ning Y Q, Qin L, Wang L J 2022 Opt. Express 30 22364Google Scholar

    [9]

    Javed N, Nguyen N L, Naqvi S F A, Ha J Y 2022 Opt. Express 30 33767Google Scholar

    [10]

    Huang J J, Li X, Zhang J P 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications, Chongqing, China, June 4–7, 2021 p1

    [11]

    Sheng Q, Wang M, Ma H C, Qi Y, Liu J J, Xu D G, Shi W, Yao J Q 2021 Opt. Express 29 34269Google Scholar

    [12]

    Sheng Q, Wang A H, Wang M, Ma H C, Qi Y, Liu J J, Wang S J, Xu D G, Shi W, Yao J Q 2022 Opt. Laser Technol. 151 108011Google Scholar

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [14]

    Sheng Q, Wang A H, Ma Y Y, Wang S J, Wang M, Shi Z, Liu J J, Fu S J, Shi W, Yao J Q, Omatsu T 2022 Photoni X 3 4Google Scholar

    [15]

    刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨 2022 物理学报 71 014204Google Scholar

    Liu J J, Sheng Q, Wang M, Zhang J X, Geng X N, Shi Z, Wang A H, Shi W, Yao J Q 2022 Acta Phys. Sin. 71 014204Google Scholar

    [16]

    Wang M, Ma Y Y, Sheng Q, He X, Liu J J, Shi W, Yao J Q, Omatsu T 2021 Opt. Express 29 27783Google Scholar

    [17]

    Sheng Q, Wang A H, Qi Y, Wang M, Shi Z, Geng J N, Liu J J, Wang S J, Fu S J, Shi W, Yao, J Q 2022 Results Phys. 37 105558Google Scholar

    [18]

    刘俊杰, 齐岳, 盛泉, 王思佳, 王盟, 徐德刚, 史伟, 姚建铨 2022 红外与激光工程 51 20211108Google Scholar

    Liu J J, Qi Y, Sheng Q, Wang S J, Wang M, Xu D G, Shi W, Yao J Q 2022 Infrared Laser Eng. 51 20211108Google Scholar

    [19]

    Liu J J, Wang A H, Sheng Q, Qi Y, Wang S J, Wang M, Xu D G, Fu S J, Shi W, Yao J Q 2022 Chin. Opt. Lett. 20 031407Google Scholar

    [20]

    Lumb M P, Meitl M, Wilson J, Bonafede S, Burroughs S, Forbes D V, Bailey C G, Hoven N M, Hoheisel R, Yakes M K, Polly S J, Hubbard S M, Walters R J 2014 IEEE 40th Photovoltaic Specialist Conference, Denve, USA, June 8–13, 2014 p0491

  • [1] Zhao Xin-Wei, Lü Jun-Peng, Ni Zhen-Hua. Lead halide perovskites Fabry-Pérot resonant cavity laser. Acta Physica Sinica, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] Zhang Bai-Fu, Zhu Kang, Wu Heng, Hu Hai-Feng, Shen Zhe, Xu Ji. Numerical study of metallic semiconductor nanolasers with double-concave cavity structures. Acta Physica Sinica, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [3] Li Hong-Xia, Jiang Yang, Bai Guang-Fu, Shan Yuan-Yuan, Liang Jian-Hui, Ma Chuang, Jia Zhen-Rong, Zi Yue-Jiao. Single mode optoelectronic oscillator assisted by active ring resonance cavity filtering. Acta Physica Sinica, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [4] Ji Zhe, Jia Da-Gong, Zhang Hong-Xia, Zhang De-Long, Liu Tie-Gen, Zhang Yi-Mo. Study of structure parameters effect on performance of optical en/decoder based on parallel-cascaded microring resonators. Acta Physica Sinica, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [5] Wen Zhi-Wen, Qi Hui-Rong, Dai Hong-Liang, Zhang Yu-Lian, Zhang Jian, Wei Kun, Ouyang Qun, Shao Jian-Xiong. Modified method for diffraction aberration of one-dimensional wire chamber. Acta Physica Sinica, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [6] Zhang Xiao-Jun, Yang Fu, Wang Yong-Gang, Sun Li-Qun, Wen Qiao, Niu Han-Ben. Method of designing astigmatic compensation cavity for mode-locked laser based on propagation circle. Acta Physica Sinica, 2013, 62(2): 024211. doi: 10.7498/aps.62.024211
    [7] Sun Jin-Xia, Pan Guo-Qing, Liu Ying. Third-order aberrations of a plane symmetric optical system. Acta Physica Sinica, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [8] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [9] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [10] Liu Zheng, Wang Sheng-Qian, Huang Lin-Hai, Rao Chang-Hui. Analysis of comprehensive effects of piston error and sub-aperture aberrations on the image quality of sparse-optical-synthetic-aperture system. Acta Physica Sinica, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [11] Pi Dao-Rui, Huang Yuan-Shen, Zhang Da-Wei, Ni Zheng-Ji, Zhuang Song-Lin. Optimization of the flat-field holographic concave grating in wide spectral range. Acta Physica Sinica, 2010, 59(2): 1009-1016. doi: 10.7498/aps.59.1009
    [12] Zhao Yang-Ying, Han Hai-Nian, Teng Hao, Wei Zhi-Yi. Generation of femtoseond Ti:sapphire laser at 10MHz repetition rate by extending laser cavity with a telescope. Acta Physica Sinica, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [13] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [14] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [15] Xu Zhi-Guang, Zhang Shu-Lian, Li Yan, Du Wen-Hua. Theoretic analysis of the cat’s eye cavity He-Ne laser. Acta Physica Sinica, 2006, 55(9): 4665-4672. doi: 10.7498/aps.55.4665
    [16] Gu Pei-Fu, Huang Bi-Qin, Zheng Zhen-Rong. Thin-film photonic crystal omnidirectional reflector used in visible region. Acta Physica Sinica, 2005, 54(8): 3707-3710. doi: 10.7498/aps.54.3707
    [17] Xi Zai-Jun, Zheng Qi-Guang, Qin Ying-Xiong, Yu Ben-Hai, Tong Xing-Lin. A study on the resonator of multi-rod series connection solid-state lasers. Acta Physica Sinica, 2003, 52(6): 1396-1402. doi: 10.7498/aps.52.1396
    [18] Sun Jing-Hua, Zhang Ruo-Bing, Hu You-Fang, Zhang Zhi-Gang, Wang Qing-Yue. . Acta Physica Sinica, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [19] TANG XIAO-JUN, ZHAO ZONG-HAI, XIN JIAN-GUO. PHASE COUPLING OF RF-EXCITED OPTICAL PHASE-SHIFTED ARRAY RESONATOR SLAB WAVEGUIDE CO2 LASERS. Acta Physica Sinica, 1999, 48(7): 1236-1247. doi: 10.7498/aps.48.1236
    [20] WU ZHONG-XIANG. RADIATION DENSITY IN LASER CAVITY CALCULATED BY FIELD STRENGTH SUPERPOSITION. Acta Physica Sinica, 1980, 29(3): 392-394. doi: 10.7498/aps.29.392
Metrics
  • Abstract views:  4456
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2022
  • Accepted Date:  08 November 2022
  • Available Online:  28 November 2022
  • Published Online:  20 February 2023

/

返回文章
返回