Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple narrowband whispering-gallery model and transparent display applications of spherical hyperbolic dispersive metamaterial cavity

Li Yan Ren Si-Meng Chu Bo Yan Ru-Jiang Yu Qun-Xing Sun Hui Shao Li Zhong Fa-Cheng

Citation:

Multiple narrowband whispering-gallery model and transparent display applications of spherical hyperbolic dispersive metamaterial cavity

Li Yan, Ren Si-Meng, Chu Bo, Yan Ru-Jiang, Yu Qun-Xing, Sun Hui, Shao Li, Zhong Fa-Cheng
PDF
HTML
Get Citation
  • A novel spherical hyperbolic metamaterial (HMM) cavity for enhancing color-transparent display is designed in this work. This HMM cavity consists of a silver core wrapped alternatively by several dielectric layers and silver layers. According to the effective medium theory and Mie scattering theory, we demonstrate that such an HMM cavity supports multiple whispering-gallery modes with deep subwavelength characteristics. The number of whispering-gallery modes with the same angular momentum is equal to the number of silver layers within the HMM cavity. Furthermore, we demonstrate that these excited whispering-gallery modes are capable of strongly confining the electric fields within the different dielectric shell layers, thus reducing Ohmic losses and narrowing resonance linewidths. In addition, we systematically investigate how the structure parameters affect whispering-gallery modes for an HMM cavity with 5 alternative dielectric layers and silver layers. Interestingly, by increasing the thickness of outermost dielectric layer and silver layer, the resonance wavelength of TM1,2 mode and TM1,3 mode remain nearly unchanged. However, the TM1,1 mode experiences a significant blueshift, and the intensity of the TM1,1, TM1,2 and TM1,3 mode can be substantially tuned. Consequently, through structural optimization, the HMM cavity can support triple narrowband resonances in the red, green, and blue spectral regions. Finally, we show that the HMM cavity exhibits dipole radiation characteristics at the three resonance wavelengths, effectively confining light within an angular range from –45° to +45° relative to the incident light direction, and confirming the scattered light viewed from a wide angle. These features make the HMM cavity suitable for achieving high transparency, brightness, and wide viewing angles in full-color transparent displays.
      Corresponding author: Li Yan, yanli@zua.edu.cn ; Zhong Fa-Cheng, zhongfacheng@163.com
    • Funds: Project supported by the Key Research Projects of Colleges and Universities of Henan Province, China (Grant No. 23ZX018), the National Natural Science Foundation of China (Grant No. 11704344), and the Research Projects of Colleges and Universities of Henan Province, China (Grant No. 22A140030).
    [1]

    Hsu C W, Zhen B, Qiu W J, Shapira O, DeLacy B G, Joannopoulos J D, Soljačić M 2014 Nat. Commun. 5 3152Google Scholar

    [2]

    Hedili M K, Freeman M O, Urey H 2012 Proc. SPIE. 8428 84280XGoogle Scholar

    [3]

    Görrn P, Sander M, Meyer J, Kroger M, Becker E, Johannes H, Kowalsky W, Riedl T 2006 Adv. Mater. 18 738Google Scholar

    [4]

    Hedili M K, Freeman M O, Urey H 2013 Appl. Opt. 52 1117Google Scholar

    [5]

    Goldenberg J F, McKechnie T S 1985 Opt. Soc. Am. A 2 2337Google Scholar

    [6]

    Hedili M K, Freeman M O, Urey H 2013 Opt. Express 21 24636Google Scholar

    [7]

    Hong K, Yeom J, Jang C, Hong Jisoo, Lee B 2014 Opt. Lett. 39 127Google Scholar

    [8]

    Soomro S R, Urey H 2016 Opt. Express 24 24232Google Scholar

    [9]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 101 087403Google Scholar

    [10]

    王振林 2009 物理学进展 3 287Google Scholar

    Wang Z L 2009 Phys. Pro. 3 287Google Scholar

    [11]

    Smith D R, Schurig D 2003 Phys. Lett. 90 077405Google Scholar

    [12]

    Yang X D, Yao J, Rho J, Yin X B, Zhang X 2012 Nat. Photon. 6 450Google Scholar

    [13]

    Saito K, Tatsuma T 2015 Nanoscale 7 20365Google Scholar

    [14]

    Ye Y Y, Chen T P, Zhen J Y, Xu C, Zhang J, Li H K 2018 Nanoscale 10 2438Google Scholar

    [15]

    Soomro S R, Urey H 2017 Appl. Opt. 56 6108Google Scholar

    [16]

    Shin S, Boyeon H, Zhao Z J, Jeon S H, Jung J Y, Lee J H, Ju B K, Jeonget J H 2018 Sci. Rep. 8 2463Google Scholar

    [17]

    Chu B, Li Y, Qin Y H, Hu T Z, Zhong F C, Zeng F G, Ding P, Shao L, Du Y X, Tian S, Chen Z 2023 Nanotechnology 34 325301Google Scholar

    [18]

    Barnes W L, Alain D, Ebbesen T W 2003 Nature 424 824Google Scholar

    [19]

    Sun J B, Shalaev M I, Litchinitser N M 2015 Nat. Commun. 6 7201Google Scholar

    [20]

    Wan M J, Gu P, Liu W Y, Chen Z, Wang Z L 2017 Appl. Phys. Lett. 110 031103Google Scholar

    [21]

    李艳, 钟发成, 褚博, 邵立, 王俊俏, 万明杰, 杨鹏, 王妍妍, 丁佩, 曾凡光, 于占军, 许坤, 杜银霄, 霍海波, 陈卓, 王振林 2021 中国科学: 物理学 力学 天文学 51 104211Google Scholar

    Li Y, Zhong F C, Chu B, Shao L, Wang J Q, Wan M J, Yang P, Wang Y Y, Ding P, Zeng F G, Yu Z J, Xu K, Du Y X, Huo H B, Chen Z, Wang Z L 2021 Sci. Sin. Phys. Mech. As. 51 104211Google Scholar

    [22]

    Gu P, Chen J, Chen S Y, Yang C, Zhang Z X, Du W, Yan Z D, Tang C J, Chen Z 2021 Photonics Res. 9 829Google Scholar

    [23]

    Gu P, Guo Y H, Chen J, Zhang Z X, Yan Z D, Liu F X, Tang C J, Du W, Chen Z 2021 Nanomaterials 11 2301Google Scholar

    [24]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particls Optics (New York: Wiley) p475

    [25]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [26]

    Wu C, Salandrino A, Ni X, Zhang X 2014 Phys. Rev. X 4 021015Google Scholar

    [27]

    Knight M W, Halas N J 2008 New J. Phys. 10 105006Google Scholar

    [28]

    Fan X, Zheng W, Singh D J 2014 Light Sci. Appl. 3 179Google Scholar

    [29]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

  • 图 1  (a) 由介质和银交替包裹银核组成的球形HMM腔结构示意图; (b) 由有效介质理论在f = 0.5 ×1015 Hz处计算该HMM腔的等频面 (黑色曲线), 蓝色圆代表光在空气中的等频面; (c) 4对银 (Rin = d = 5 nm)/介质层 (s = 4 nm) 交替包裹形成的HMM腔, 在角动量数n = 3的八极子共振 (波长λ = 600 nm, 频率f = 0.5 ×1015 Hz) 处的电场强度分布图

    Figure 1.  (a) A schematic of the HMM cavity formed by alternately wrapping a silver core with dielectric and silver layers; (b) the hyperbolic isofrequency contour (black line) of the cavity in the momentum space calculated with the effective medium approximation at a frequency of f = 0.5×1015 Hz, the blue line represents the corresponding isofrequency contour of air; (c) electric field intensity enhancement distributions of the HMM cavity formed by 4 pairs of silver (Rin = d = 5 nm) and dielectric (s = 4 nm, nd = 1.45) layers at octupolar resonant wavelength λ = 600 nm with the angular momentum n = 3.

    图 4  固定HMM腔中Rin = 5 nm, s1 = 4 nm, d1 = 5 nm, 介质折射率n1 = 1.8, n2 = 1.45情况下 (a) 同时固定s2 = 9 nm, 银壳层厚度d2从0 nm到10 nm时, HMM腔的散射效率谱; (b) 同时固定d2=8 nm, 介质层厚度s2从5 nm到15 nm时, HMM腔的散射效率谱

    Figure 4.  (a) The scattering efficiency spectra as a function of the wavelength and the thinkness of the third silver layer (d2 ) for the HMM cavities with fixed Rin = 5 nm, s1 = 4 nm, d1 = 5 nm, d2 = 8 nm, s2 = 9 nm and n2 = 1.45; (b) the scattering efficiency spectra as a function of the wavelength and the thickness of the second dielectric layer (s2 ) for the HMM cavities with fixed Rin = 5 nm, s1 = 4 nm, d1 = 5 nm, d2 = 8 nm, n1 = 1.8, and n2 = 1.45.

    图 2  (a) 由8层银(Rin = d = 5 nm)和介质层(s = 4 nm, nb = 1.5) 交替包裹组成的HMM腔的散射谱, 这里展示了偶极和四极电分量的贡献(a1, a2), 为了更清楚地显示电四极子的贡献, 将其散射效率值扩大了50倍, 右上方插图是通过Comsol软件模拟(蓝色三角)和米氏散射理论计算(蓝色实线)的总散射效率谱; (b) 结构在TM1,1模式共振波长λ = 1266 nm处的电场强度分布图; (c) 结构在TM1,2模式共振波长λ = 768 nm处的电场强度分布图; (d) 结构在TM2,1模式共振波长λ = 791 nm处的电场强度分布图; (e) 结构在TM2,2模式共振波长λ = 531 nm处的电场强度分布图

    Figure 2.  (a) The scattering efficiency spectra (the contributions from the first two electric terms (a1, a2), respectively) of the HMM cavity (inset) formed by eight layers of silver (Rin = d = 5 nm) and dielectric (s = 4 nm). For clarity, the contribution from a2 is magnified 50 times. Top inset shows the total scattering efficiency spectra simulated based on Comsol software (blue triangle) and calculated based on Mie scattering theory (blue line), respectively. (b)—(e) Electric field intensity enhancement distributions of the two dipolar resonances (b) TM1,1 and (c) TM1,2, and two quadrupolar resonances (d) TM2,1 and (e) TM2,2, respectively.

    图 3  (a) 5层银(Rin = d1 = d2 = 5 nm)/介质层(s1 = s2 = 4 nm, n1 = 1.8, n2 = 1.45)交替包裹组成的球形HMM腔的散射谱, 插图为HMM腔的结构示意图; (b) 改变HMM腔中银核尺寸Rin的散射效率谱; (c) 改变HMM腔中银层厚度(保持Rin = 5 nm, d1 = d2)的散射效率谱; (d) 改变HMM腔中介质层厚度s1 = s2的散射效率谱; (e) 分别改变HMM腔中第2层银层厚度d1和第1层介质层厚度s1的散射效率谱; (f) 分别改变HMM腔中第3层银层厚度d2和第2层介质层厚度s2的散射效率谱

    Figure 3.  (a) The scattering efficiency spectrum of the HMM cavity (inset) formed by five layers of silver (Rin = d1 = d2 = 5 nm) and dielectric (s1 = s2 = 4 nm, n1 = 1.8, n2 = 1.45); (b)–(d) the scattering efficiency spectra of HMM cavities same as the structure used in (a), but with different core radii (b), different thinknesses of the silver layers (c) and different thinknesses of the dielectric layers (d); (e), (f) the scattering efficiency spectra of HMM cavities same as the structure used in (a), but with different thinknesses of the second silver layer (d1) and first dielectric layers (s1) (e) and different thinknesses of third silver layer (d2) and second dielectric layers (s2) (f).

    图 5  (a) 5层银 (Rin = d1 = 5 nm, d2 = 10 nm) /介质层 (s1 = 4 nm, s2 = 9 nm, n1 = 1.8, n2 = 1.45) 交替包裹形成的球形HMM腔的散射效率谱, 黑色三角形代表用Comsol软件模拟的结果, 黑色实线为基于米氏散射理论求解析计算的结果; (b) 基于HMM腔波长选择性散射的透明显示器示意图; (c)—(e) HMM腔在偶极共振波长 (c) λ ≈ 425 nm (TM1,3), (d) λ ≈ 544 nm (TM1,2), (e) λ ≈ 680 nm (TM1,3)的二维散射角分布图. 其中红色和黑色曲线分别为散射平面处于和ϕ = 0和ϕ = π/2的情况

    Figure 5.  (a) The total scattering efficiency spectra based on Comsol software (black triangle) and Mie scattering theory (black line) for the HMM cavity formed by five layers of silver (Rin = d1 = 5 nm, d2 = 10 nm) and dielectric (s1 = 4 nm. s2 = 9 nm, n1 = 1.8, n2 = 1.45); (b) a schematic for a transparent display based on HMM cavities with wavelength-selective scattering; (c)–(e) the 2D scattering angle distribution of the structure at wavelengths of (c) λ ≈ 425 nm (TM1,3), (d) λ ≈ 544 nm (TM1,2), and (e) λ ≈ 680 nm (TM1,3) at dipole resonance. Red and black curves correspond to the case of scattering plane at ϕ = 0 and ϕ = π/2, respectively.

  • [1]

    Hsu C W, Zhen B, Qiu W J, Shapira O, DeLacy B G, Joannopoulos J D, Soljačić M 2014 Nat. Commun. 5 3152Google Scholar

    [2]

    Hedili M K, Freeman M O, Urey H 2012 Proc. SPIE. 8428 84280XGoogle Scholar

    [3]

    Görrn P, Sander M, Meyer J, Kroger M, Becker E, Johannes H, Kowalsky W, Riedl T 2006 Adv. Mater. 18 738Google Scholar

    [4]

    Hedili M K, Freeman M O, Urey H 2013 Appl. Opt. 52 1117Google Scholar

    [5]

    Goldenberg J F, McKechnie T S 1985 Opt. Soc. Am. A 2 2337Google Scholar

    [6]

    Hedili M K, Freeman M O, Urey H 2013 Opt. Express 21 24636Google Scholar

    [7]

    Hong K, Yeom J, Jang C, Hong Jisoo, Lee B 2014 Opt. Lett. 39 127Google Scholar

    [8]

    Soomro S R, Urey H 2016 Opt. Express 24 24232Google Scholar

    [9]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 101 087403Google Scholar

    [10]

    王振林 2009 物理学进展 3 287Google Scholar

    Wang Z L 2009 Phys. Pro. 3 287Google Scholar

    [11]

    Smith D R, Schurig D 2003 Phys. Lett. 90 077405Google Scholar

    [12]

    Yang X D, Yao J, Rho J, Yin X B, Zhang X 2012 Nat. Photon. 6 450Google Scholar

    [13]

    Saito K, Tatsuma T 2015 Nanoscale 7 20365Google Scholar

    [14]

    Ye Y Y, Chen T P, Zhen J Y, Xu C, Zhang J, Li H K 2018 Nanoscale 10 2438Google Scholar

    [15]

    Soomro S R, Urey H 2017 Appl. Opt. 56 6108Google Scholar

    [16]

    Shin S, Boyeon H, Zhao Z J, Jeon S H, Jung J Y, Lee J H, Ju B K, Jeonget J H 2018 Sci. Rep. 8 2463Google Scholar

    [17]

    Chu B, Li Y, Qin Y H, Hu T Z, Zhong F C, Zeng F G, Ding P, Shao L, Du Y X, Tian S, Chen Z 2023 Nanotechnology 34 325301Google Scholar

    [18]

    Barnes W L, Alain D, Ebbesen T W 2003 Nature 424 824Google Scholar

    [19]

    Sun J B, Shalaev M I, Litchinitser N M 2015 Nat. Commun. 6 7201Google Scholar

    [20]

    Wan M J, Gu P, Liu W Y, Chen Z, Wang Z L 2017 Appl. Phys. Lett. 110 031103Google Scholar

    [21]

    李艳, 钟发成, 褚博, 邵立, 王俊俏, 万明杰, 杨鹏, 王妍妍, 丁佩, 曾凡光, 于占军, 许坤, 杜银霄, 霍海波, 陈卓, 王振林 2021 中国科学: 物理学 力学 天文学 51 104211Google Scholar

    Li Y, Zhong F C, Chu B, Shao L, Wang J Q, Wan M J, Yang P, Wang Y Y, Ding P, Zeng F G, Yu Z J, Xu K, Du Y X, Huo H B, Chen Z, Wang Z L 2021 Sci. Sin. Phys. Mech. As. 51 104211Google Scholar

    [22]

    Gu P, Chen J, Chen S Y, Yang C, Zhang Z X, Du W, Yan Z D, Tang C J, Chen Z 2021 Photonics Res. 9 829Google Scholar

    [23]

    Gu P, Guo Y H, Chen J, Zhang Z X, Yan Z D, Liu F X, Tang C J, Du W, Chen Z 2021 Nanomaterials 11 2301Google Scholar

    [24]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particls Optics (New York: Wiley) p475

    [25]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [26]

    Wu C, Salandrino A, Ni X, Zhang X 2014 Phys. Rev. X 4 021015Google Scholar

    [27]

    Knight M W, Halas N J 2008 New J. Phys. 10 105006Google Scholar

    [28]

    Fan X, Zheng W, Singh D J 2014 Light Sci. Appl. 3 179Google Scholar

    [29]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

  • [1] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] Jiang Le-Xin, Xie Zhen-Long, Guo Ze-Hong, Qiu Yi-Ning, Chen Yi-Hang. Mechanism study of all-dielectric metamaterial wideband reflector based on quasi-canonical mode. Acta Physica Sinica, 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [3] Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Physica Sinica, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [4] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [5] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [6] Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian. Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials. Acta Physica Sinica, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [7] Liu Li-Hui, Lü Wei-Yu, Yang Chao, Mai Can-Ji, Chen De-Peng. Propagation properties of partially coherent Hermite-cosh-Gaussian beams in non-Kolmogorov turbulence. Acta Physica Sinica, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [8] Li Dan, Zhang Bao-Long, Kwok Hoising. Three-dimensional optical modeling of vertical alignment mode color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2015, 64(14): 140701. doi: 10.7498/aps.64.140701
    [9] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [10] Zhang Bao-Long, Li Dan, Dai Feng-Zhi, Yang Shi-Feng, Hoising Kwok. Three-dimensional optical modeling of color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [11] Wang Bin, Du Chao-Hai, Liu Pu-Kun, Geng Zhi-Hui, Xu Shou-Xi. Study and design of a quasi-optical mode converter for W-band whispering-gallery mode gyrotron. Acta Physica Sinica, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
    [12] Li Jin-Hong, Yang Ai-Lin, Lü Bai-Da. Evolution of average intensity distribution and angular spread of partially coherent Hermite-sinh-Gaussian beams propagating through turbulent atmosphere. Acta Physica Sinica, 2009, 58(1): 674-683. doi: 10.7498/aps.58.674
    [13] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [14] Pu Xiao-Yun, Bai Ran, Xiang Wen-Li, Du Fei, Jiang Nan. Two-wavelength-range whispering-gallery-mode fiber laser pumped by evanescent wave. Acta Physica Sinica, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [15] Yao Jun-Cai, Shen Jing, Wang Jian-Hua. Experimental research of human vision characteristic in the range of luminance of cathode ray tube display. Acta Physica Sinica, 2008, 57(7): 4034-4041. doi: 10.7498/aps.57.4034
    [16] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [17] Ma Yan-Ping, Shang Xue-Fu, Gu Zhi-Qi, Li Zhen-Hua, Wang Miao, Xu Ya-Bo. The application of single-walled carbon nanotubes in field emission display. Acta Physica Sinica, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [18] Lin Zhi-Xian, Guo Tai-Liang, Hu Li-Qin, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Physica Sinica, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [19] Wang Xi-Qing, Lu Bai-Da. . Acta Physica Sinica, 2002, 51(2): 247-252. doi: 10.7498/aps.51.247
    [20] GUO JIAN-XIN, KWOK HOI-SING. Advanced Bistable Twisted Nematic Liquid Displays. Acta Physica Sinica, 2000, 49(10): 1995-2000. doi: 10.7498/aps.49.1995
  • supplement 2-20231351Suppl.pdf supplement
Metrics
  • Abstract views:  725
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2023
  • Accepted Date:  01 October 2023
  • Available Online:  24 November 2023
  • Published Online:  20 January 2024

/

返回文章
返回