搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二水草酸镁(MgC2O42H2O)的无水碳酸镁(MgCO3)的高压制备和表征

梁文 李泽明 王璐颖 陈琳 李和平

引用本文:
Citation:

基于二水草酸镁(MgC2O42H2O)的无水碳酸镁(MgCO3)的高压制备和表征

梁文, 李泽明, 王璐颖, 陈琳, 李和平

High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O42H2O) and its characterization

Liang Wen, Li Ze-Ming, Wang Lu-Ying, Chen Lin, Li He-Ping
PDF
导出引用
  • 无水碳酸镁因为其重要的研究价值和广泛的应用而备受关注,因此探索无水碳酸镁的制备方法已经成为材料加工的一个重要课题.以二水草酸镁为起始原料,使用高温高压反应法成功地合成了高纯度的无水碳酸镁,对所得样品分别进行了粉末X射线衍射和Raman光谱的表征.通过热重分析以及尝试不同合成条件,给出了二水草酸镁-碳酸镁P-T相图并解释了高温高压合成碳酸镁的原理.利用偏光显微镜观察样品碳酸镁形貌、晶粒度以及晶体解理面,同时对样品的单晶粒做微区电子探针分析,给出了样品的镁含量.
    Stimulated by the extensive application and research value, the study of anhydrous magnesium carbonate (MgCO3) has been a subject of great concern recently, so that a basic problem in designing a method of effectively synthesizing MgCO3 is very worth considering. In previous studies, different methods were reported to synthesize MgCO3 successfully but they still have some obvious deficiencies. The micro-particle sizes are too small to satisfy the basic requirements of micro-analysis. Thus, it is needed to explore the new methods of artificially synthesizing MgCO3 with the simple process and the high efficiency. By using magnesium oxalate dihydrate (MgC2O42H2O) as starting material, MgCO3 sample is successfully synthesized by a solid reaction under high temperature and high pressure for the first time in this work. The properties of as-synthesized sample are investigated by X-ray powder diffraction and Raman spectroscopy:neither of them shows any impurities existing in the sample. Significantly, the crystallinity quality is greatly improved in the terms of the maximum grain sizes up to 200 micrometers, which could provide a base for MgCO3 single crystal growth in the future. Moreover, compared with the results of previous studies, the reaction time of high pressure synthesis is controlled within 1 h so that the efficiency of the synthesis is greatly improved. Based on thermogravimetric analyses and the results of high pressure experiment under the various pressures and temperatures, the P-T phase diagrams of MgC2O42H2O-MgCO3-MgO at high pressures of 0.5, 1.0 and 1.5 GPa are obtained, and in this case, it is reasonable to explain the principle of MgCO3 synthesis under high pressure strictly. From the P-T diagram, high pressure can greatly improve the thermal stability of material, and the decomposition temperature of MgCO3 obviously increases with pressure increasing. However, due to decomposition temperature of MgCO3 increasing more quickly than that of MgCO42H2O, the stable phase regions of MgC2O42H2O and MgCO3 are separated from each other, and hence, the corresponding temperature and pressure can be controlled to decompose the phase of MgC2O42H2O while stabilizing the phase of MgCO3 so as to obtain MgCO3 successfully. Besides, by using polarizing microscope, the morphology of MgCO3 sample as well as its crystal cleavage plane (1011) is observed clearly, and it is noted that as-synthesized MgCO3 has good optical properties and high-quality crystallinity. The electron probing analysis for MgCO3 thin section is performed to quantify the Mg content and the calculation indicates that the sample composition is Mg0.99CO3.
      通信作者: 李和平, liheping@vip.gyig.ac.cn
    • 基金项目: 中国科学院地球化学研究所135项目、国家重点研究发展计划(批准号:2016YFC0600100)和中国科学院重大科研装备研制项目(批准号:YZ200720)资助的课题.
      Corresponding author: Li He-Ping, liheping@vip.gyig.ac.cn
    • Funds: Project supported by the 135 Program of the Institute of Geochemistry, Chinese Academy of Sciences, the National Key Research and Development Plan of China (Grant No. 2016YFC0600100), and the Large-scale Scientific Apparatus Development Program, Chinese Academy of Sciences (Grant No. YZ200720).
    [1]

    Wang A, Pasteris J D, Meyer H O A, Dele-Duboi M L 1996 Earth Planetary Sci. Lett. 141 293

    [2]

    Freitag F, Kleinebudde P 2003 Eur. J. Pharmaceut. Sci. 19 281

    [3]

    Lou Z, Chen C, Chen Q 2005 J. Phys. Chem. B 109 10557

    [4]

    Qian J, McMurray C E, Mukhopadhyay D K, Wiggins J K, Vail M A, Bertagnolli K E 2012 Int. J. Refractory Metals Hard Mater. 31 71

    [5]

    Surface J A, Skemer P, Hayes S E, Conradi M S 2013 Environ. Sci. Technol. 47 119

    [6]

    de Leeuw N H, Parker S C 2000 J. Chem. Phys. 112 4326

    [7]

    Morgan A B, Cogen J M, Opperman R S, Harris J D 2007 Fire Mater. 31 387

    [8]

    Rigolo M, Woodhams R T 1992 Polymer Eng. Sci. 32 327

    [9]

    Berg G W 1986 Nature 324 50

    [10]

    Alt J C, Teagle D A H 1999 Geochim. Cosmochim. Acta 63 1527

    [11]

    Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Sobolev N V 1999 Nature 400 417

    [12]

    Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M 2004 Nature 427 60

    [13]

    Oganov A R, Ono S, Ma Y, Glass C W, Garcia A 2008 Earth Planetary Sci. Lett. 273 38

    [14]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H, Mao H, Hemley R J 2005 Nature 436 377

    [15]

    Lavina B, Dera P, Downs R T, Prakapenka V, Rivers M, Sutton S, Nicol M 2009 Geophys. Res. Lett. 36 L23306

    [16]

    Lavina B, Dera P, Downs R T, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D 2010 Phys. Rev. B 82 064110

    [17]

    Chai L, Navrotsky A 1993 Contribut. Mineral. Petrol. 114 139

    [18]

    Sandengen K, Jøsang L O, Baard K 2008 Ind. Eng. Chem. Res. 47 1002

    [19]

    Xing Z, Hao Q, Ju Z, Xu L, Qian Y 2010 Mater. Lett. 64 1401

    [20]

    Herman R G, Bogdan C E, Sommer A J, Simpson D R 1987 Appl. Spectrosc. 41 437

    [21]

    Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E 2010 Astrobiology 10 293

  • [1]

    Wang A, Pasteris J D, Meyer H O A, Dele-Duboi M L 1996 Earth Planetary Sci. Lett. 141 293

    [2]

    Freitag F, Kleinebudde P 2003 Eur. J. Pharmaceut. Sci. 19 281

    [3]

    Lou Z, Chen C, Chen Q 2005 J. Phys. Chem. B 109 10557

    [4]

    Qian J, McMurray C E, Mukhopadhyay D K, Wiggins J K, Vail M A, Bertagnolli K E 2012 Int. J. Refractory Metals Hard Mater. 31 71

    [5]

    Surface J A, Skemer P, Hayes S E, Conradi M S 2013 Environ. Sci. Technol. 47 119

    [6]

    de Leeuw N H, Parker S C 2000 J. Chem. Phys. 112 4326

    [7]

    Morgan A B, Cogen J M, Opperman R S, Harris J D 2007 Fire Mater. 31 387

    [8]

    Rigolo M, Woodhams R T 1992 Polymer Eng. Sci. 32 327

    [9]

    Berg G W 1986 Nature 324 50

    [10]

    Alt J C, Teagle D A H 1999 Geochim. Cosmochim. Acta 63 1527

    [11]

    Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Sobolev N V 1999 Nature 400 417

    [12]

    Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M 2004 Nature 427 60

    [13]

    Oganov A R, Ono S, Ma Y, Glass C W, Garcia A 2008 Earth Planetary Sci. Lett. 273 38

    [14]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H, Mao H, Hemley R J 2005 Nature 436 377

    [15]

    Lavina B, Dera P, Downs R T, Prakapenka V, Rivers M, Sutton S, Nicol M 2009 Geophys. Res. Lett. 36 L23306

    [16]

    Lavina B, Dera P, Downs R T, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D 2010 Phys. Rev. B 82 064110

    [17]

    Chai L, Navrotsky A 1993 Contribut. Mineral. Petrol. 114 139

    [18]

    Sandengen K, Jøsang L O, Baard K 2008 Ind. Eng. Chem. Res. 47 1002

    [19]

    Xing Z, Hao Q, Ju Z, Xu L, Qian Y 2010 Mater. Lett. 64 1401

    [20]

    Herman R G, Bogdan C E, Sommer A J, Simpson D R 1987 Appl. Spectrosc. 41 437

    [21]

    Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E 2010 Astrobiology 10 293

  • [1] 陈兆亮, 卢达标, 叶旭斌, 赵浩婷, 张杰, 潘昭, 迟振华, 崔田, 沈瑶, 龙有文. 钙钛矿型CeTaN2O的高压制备及其磁性和电学性质. 物理学报, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [3] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [4] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [5] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [6] 徐波, 田永君. 纳米孪晶超硬材料的高压合成. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [7] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [8] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [9] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [10] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [11] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏. 高长径比柱状金刚石的高温高压合成与机理研究. 物理学报, 2012, 61(7): 078102. doi: 10.7498/aps.61.078102
    [12] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [13] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [14] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究. 物理学报, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [15] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成. 物理学报, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
    [16] 熊玉峰, 金 铎, 姚玉书, 吴 非, 贾顺莲, 赵忠贤. 新块材超导体Pr1-xCaxBa2Cu3O7-δ(0.4≤x≤0.6)的高压合成与超导电性. 物理学报, 1998, 47(10): 1713-1719. doi: 10.7498/aps.47.1713
    [17] 王文魁, 何寿安, 刘志毅, 徐小平, 王守证, 黄新明. La4Au亚稳超导相的高压合成. 物理学报, 1983, 32(12): 1618-1622. doi: 10.7498/aps.32.1618
    [18] 赵毓玲, 姚玉书, 王文魁. 钙钛石结构Pb(Zn1/3Nb2/3)O3的高温高压合成. 物理学报, 1978, 27(2): 224-225. doi: 10.7498/aps.27.224
    [19] 徐济安, 朱宰万. 高压下A15结构Nb3Si合成条件的估计. 物理学报, 1976, 25(6): 533-535. doi: 10.7498/aps.25.533
    [20] 立方氮化硼协作组. 高温高压下立方氮化硼的合成. 物理学报, 1976, 25(1): 1-9. doi: 10.7498/aps.25.1
计量
  • 文章访问数:  6404
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-22
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-02-05

/

返回文章
返回