Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Key technology of high-precision time frequency transfer via 200 km desert urban fiber link

Ying Kang Gui You-Zhen Sun Yan-Guang Cheng Nan Xiong Xiao-Feng Wang Jia-Liang Yang Fei Cai Hai-Wen

Citation:

Key technology of high-precision time frequency transfer via 200 km desert urban fiber link

Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen
PDF
HTML
Get Citation
  • The precise time and frequency signal dissemination has significant applications in scientific research such as baseline interferometry, deep space network and metrology. Aside from satellite based systems, optical fiber has become an attractive alternative medium for transferring time and frequency signals, offering much improved accuracy. For the urban fiber link in the desert environment, there are many complex noise sources, such as temperature change, outdoor wind and ground vibration. Therefore, a systematical study on the noise source and on the noise reduction method in the dessert environment have practical significance. In this paper, we demonstrate a time (1 pps) and frequency signal dissemination and time synchronization system through a 200 km urban fiber in dessert environment. The noise source of the urban fiber under dessert environment is analyzed and studied in detail; the results show that the vibration and temperature shift are the major influencing factors. The vibration of urban fiber can induce the noise in the high Fourier frequency, and the temperature shift of urban fiber can induce the noise at a low Fourier frequency. An optical compensation setup is used, including the optical delay line with temperature controlled and piezoelectric ceramics driving. The phase fluctuation of frequency signal is detected and used to control the feedback of the optical compensating setup. In order to compensate for the fiber loss in a long range, a special bi-directional erbium-doped fiber amplifier is used to regenerate optical signals to achieve the long distance transmission. Then, we study the effective link noise suppression technology under different feedback compensation parameters. The systematic feedback parameters are optimized through using the different system feedback bandwidths, feedback intensities, optical power and other key parameters. The optimized systematic feedback parameters are obtained via the careful experimental observation and discussion. With the optimized systematic feedback parameters, experimental results show that the frequency stabilities are up to 8 × 10–14 at 1 s and 1 × 10–16 at 1000 s, and time stabilities are up to 1.2 ps in an average time of 103 s. The phase stabilized transmission of hydrogen clock signal in the 200 km level desert environment urban fiber link is realized. The verification experiment plays an important role in measuring the satellite orbit based on a connected elements’ interferometry. The relevant study result is of significance for improving the precision of time and frequency signal dissemination in the dessert environmental urban fiber.
      Corresponding author: Sun Yan-Guang, ygsun@siom.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030200), the Shanghai Sailing Program, China (Grant No. 18YF1426100), and the Natural Science Foundation of Shanghai, China (Grant No. 18ZR1444300).
    [1]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    董功勋, 林锦达, 张松, 邓见辽, 王育竹 2017 光学学报 37 0702001

    Dong G X, Lin J D, Zhang S, Deng J L, Wang Y Z 2017 Acta Opt. Sin. 37 0702001

    [4]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402Google Scholar

    [7]

    Fu X H, Fang S, Zhao R C, Zhang Y, Huang J C, Sun J F, Xu Z, Wang Y Z 2018 Chin. Opt. Lett. 16 060202Google Scholar

    [8]

    Masao T, Hong F L, Ryoichi H, Hidetoshi K 2005 Nature 435 321Google Scholar

    [9]

    Tseng W, Lin S, Feng K, Fujieda M, Maeno H 2010 IEEE Trans. Ultrason. Ferr. 57 161Google Scholar

    [10]

    Tal D, Octavio MP, Lev T, Jeff H 2010 Nature 463 326Google Scholar

    [11]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [12]

    王义遒 2004 宇航计测技术 24 1Google Scholar

    Wang Y Q. 2004 J. Astron. Metrol. Meas. 24 1Google Scholar

    [13]

    Krehlik P, Sliwczynski L, Buczek L, Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844Google Scholar

    [14]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [15]

    Droste S, Ozimek F, Udem T, Predehl K, Hansch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801Google Scholar

    [16]

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. Opt. Lett. 14 070602

    [17]

    刘琴, 韩圣龙, 王家亮, 冯子桐, 陈炜, 程楠, 桂有珍, 蔡海文, 韩申生 2016 中国激光 43 0906001

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. J. Lasers 43 0906001

    [18]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 2012 Sci. Rep. 2 556Google Scholar

    [19]

    陈炜, 程楠, 刘琴, 王家亮, 冯子桐, 杨飞, 韩圣龙, 桂有珍, 蔡海文 2016 中国激光 43 0706001

    Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Yang F, Han S L, Gui Y Z, Cai H W 2016 Chin. J. Lasers 43 0706001

    [20]

    Foreman S M, Holman K W, Hudson D D, Jones D J, Ye J 2007 Rev. Sci. Instrum. 78 021101Google Scholar

  • 图 1  实地光纤链路铺设情况

    Figure 1.  Schematic of urban fiber link.

    图 2  高精度光纤时频传递系统

    Figure 2.  Schematic diagram of the frequency transfer and time synchronization system.

    图 3  (a)环境温度波动测量结果; (b)频率相位快速抖动噪声

    Figure 3.  (a) Environmental temperature vibration; (b) fast frequency phase jitter noise.

    图 4  (a)温控延迟线构造示意图; (b) 5 km温控延迟线性能测试结果

    Figure 4.  (a) Construction of fiber delay line; (b) test result of fiber delay line.

    图 5  (a)不同延时线工作电流下的相位抖动; (b)不同延时线工作电流下的阿伦方差

    Figure 5.  (a) Phase jitter for different delay line’s working current; (b) the Allan deviation for different delay line’s working current.

    图 6  (a)不同反馈带宽下的相位抖动噪声; (b)不同反馈带宽下的噪声阿伦方差; (c)不同情况下的链路相噪测试结果

    Figure 6.  (a) Phase jitter in different feedback bandwidth; (b) the Allan deviation in in different feedback bandwidth; (c) phase noise in different conditions.

    图 7  (a)不同链路光功率下的的相位抖动噪声; (b)不同链路光功率下的噪声阿伦方差

    Figure 7.  (a) Phase jitter in different link optical powers; (b) the Allan deviation in in different link optical powers.

    图 8  (a)反馈补偿前后的相位噪声阿伦方差; (b)反馈补偿前后的时延抖动偏差

    Figure 8.  (a) The Allan deviation in free running and compensated conditions; (b) time deviation (TEDV) in free running and compensated conditions.

  • [1]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    董功勋, 林锦达, 张松, 邓见辽, 王育竹 2017 光学学报 37 0702001

    Dong G X, Lin J D, Zhang S, Deng J L, Wang Y Z 2017 Acta Opt. Sin. 37 0702001

    [4]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402Google Scholar

    [7]

    Fu X H, Fang S, Zhao R C, Zhang Y, Huang J C, Sun J F, Xu Z, Wang Y Z 2018 Chin. Opt. Lett. 16 060202Google Scholar

    [8]

    Masao T, Hong F L, Ryoichi H, Hidetoshi K 2005 Nature 435 321Google Scholar

    [9]

    Tseng W, Lin S, Feng K, Fujieda M, Maeno H 2010 IEEE Trans. Ultrason. Ferr. 57 161Google Scholar

    [10]

    Tal D, Octavio MP, Lev T, Jeff H 2010 Nature 463 326Google Scholar

    [11]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [12]

    王义遒 2004 宇航计测技术 24 1Google Scholar

    Wang Y Q. 2004 J. Astron. Metrol. Meas. 24 1Google Scholar

    [13]

    Krehlik P, Sliwczynski L, Buczek L, Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844Google Scholar

    [14]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [15]

    Droste S, Ozimek F, Udem T, Predehl K, Hansch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801Google Scholar

    [16]

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. Opt. Lett. 14 070602

    [17]

    刘琴, 韩圣龙, 王家亮, 冯子桐, 陈炜, 程楠, 桂有珍, 蔡海文, 韩申生 2016 中国激光 43 0906001

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. J. Lasers 43 0906001

    [18]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 2012 Sci. Rep. 2 556Google Scholar

    [19]

    陈炜, 程楠, 刘琴, 王家亮, 冯子桐, 杨飞, 韩圣龙, 桂有珍, 蔡海文 2016 中国激光 43 0706001

    Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Yang F, Han S L, Gui Y Z, Cai H W 2016 Chin. J. Lasers 43 0706001

    [20]

    Foreman S M, Holman K W, Hudson D D, Jones D J, Ye J 2007 Rev. Sci. Instrum. 78 021101Google Scholar

Metrics
  • Abstract views:  6974
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2018
  • Accepted Date:  09 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回