Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure

Guo Li-Juan Hu Ji-Song Ma Xin-Guo Xiang Ju

Citation:

Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure

Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju
PDF
HTML
Get Citation
  • Two-dimensional (2D) materials exhibit massive potential in research and development in the scientific world due to their unique electrical, optical, thermal and mechanical properties. Graphene is an earliest found two-dimensional material, which has many excellent properties, such as high carrier mobility and large surface area. However, single layer graphene has a zero band gap, which limits its response in electronic devices. Unlike graphene, the transition metal sulfides (TMDs) have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. The WS2 is one of the 2D TMDs exhibiting a series of unique properties, such as strong spin-orbit coupling, band splitting and high nonlinear susceptibility, which make it possess many applications in semiconducting optoelectronics and micro/nano-electronics. The 2D semiconductors along with semimetallic graphene are seen as basic building blocks for a new generation of nanoelectronic devices. In this way, the artificially designed TMD heterostructure is a promising option for ultrathin photodetectors. There are few reports on the physical mechanism of carrier mobility and charge distribution at the interface of WS2/graphene heterostructure, by varying the interfacial distance of WS2/graphene heterostructure to investigate the effect on the electronic properties. Here in this work, the corresponding effects of interface cohesive interaction and electronic properties of WS2/graphene heterostructure are studied by first-principles method. The calculation results indicate that the lattice mismatch between monolayer WS2 and graphene is low, the equilibrium layer distance d of about 3.42 Å for the WS2/graphene heterostructure and a weak van der Waals interaction forms in interface. Further, by analyzing the energy band structures and the three-dimensional charge density difference of WS2/graphene, we can identify that at the interface of the WS2 layer there appears an obvious electron accumulation: positive charges are accumulated near to the graphene layer, showing that WS2 is an n-type semiconductor due to the combination with graphene. Furthermore, the total density of states and corresponding partial density of states of WS2/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and C 2p, whereas the conduction band is comprised of W 5d and S 3p orbitals, the orbital hybridization between W 5d and S 3p will cause photogenerated electrons to transfer easily from the internal W atoms to the external S atoms, thereby forming a build-in internal electric field from graphene to WS2. Finally, by varying the interfacial distance for analyzing the Schottky barrier transition, as the interfacial distance is changed greatly from 2.4 Å to 4.2 Å, the shape of the band changes slightly, however, the Fermi level descends relatively gradually, which can achieve the transition from a p-type Schottky contact to an n-type Schottky contact in the WS2/graphene. The plane-averaged charge density difference proves that the interfacial charge transfer and the Fermi level shift are the reasons for determining the Schottky barrier transition in the WS2/graphene heterostructure. Our studies may prove to be instrumental in the future design and fabrication of van der Waals based field effect transistors.
      Corresponding author: Guo Li-Juan, lisa690544@163.com ; Xiang Ju, xiang.ju@foxmail.com
    • Funds: Project supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 17A024, 17B034), the Hunan Key Laboratory Cultivation Base of Research and Development of Novel Pharmaceutical Preparations, China (Grant No. 2016TP1029), and the Construct Program of the Key Discipline in Hunan Province, the Training Program for Excellent Young Innovators of Changsha, China (Grant No. kq1802024).
    [1]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin) 2019 1800390Google Scholar

    [2]

    Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [4]

    Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar

    [6]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar

    [9]

    Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [10]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [11]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar

    [12]

    Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar

    [13]

    Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar

    [14]

    Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

    [15]

    Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar

    [16]

    Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885

    [17]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [18]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [21]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar

    [22]

    Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar

    [23]

    Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar

    [24]

    Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar

    [25]

    Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar

    [26]

    Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar

    [27]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [28]

    Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar

    [29]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar

    [30]

    Jiang J W 2015 Front. Phys. 10 287Google Scholar

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar

    [32]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [33]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [34]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [35]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [36]

    Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [37]

    Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [38]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar

    [39]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [40]

    Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar

    [41]

    Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar

    [42]

    Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar

    [43]

    Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar

    [44]

    Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

  • 图 1  单层二硫化钨/石墨烯异质结匹配模型的顶视图 (a)单层二硫化钨3 × 3 × 1超胞与石墨烯4 × 4 × 1超胞的匹配模型; (b)单层二硫化钨4 × 4 × 1超胞与石墨烯5 × 5 × 1超胞的匹配模型

    Figure 1.  Top views of two match configurations of monolayer WS2/graphene heterostructure: (a) Match configuration between 3 × 3 × 1 lateral periodicity of monolayer WS2 sheet and 4 × 4 × 1 lateral periodicity of graphene; (b) match configuration between 4 × 4 × 1 lateral periodicity of monolayer WS2 sheet and 5 × 5 × 1 lateral periodicity of graphene.

    图 2  单层二硫化钨(a)、石墨烯(b)和二硫化钨/石墨烯异质结(c)的能带结构, 其中费米能级处在0 eV, 用红色的虚线表示

    Figure 2.  Energy band structures of (a) WS2 monolayer, (b) graphene and (c) WS2/graphene heterostructure. The Fermi levels are set to zero and marked by red dashed lines.

    图 3  二硫化钨/石墨烯异质结的总态密度以及相应的分态密度

    Figure 3.  Calculated total density of states (TDOS) and the corresponding partial density of states (PDOS) of WS2/graphene heterostructure.

    图 4  二硫化钨/石墨烯异质结的三维电子密度差分图 (a)侧视图; (b)顶视图

    Figure 4.  Three-dimensional charge density difference plots WS2/graphene heterostructure: (a) Side view; (b) top view.

    图 5  不同层间距下的二硫化钨/石墨烯异质结的能带图, 其中蓝色曲线代表石墨烯部分的贡献 (a)−(j)分别代表层间距为2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, 费米能级处在0 eV, 用红色虚线表示

    Figure 5.  Band structures of WS2/graphene heterostructure under different interface distances. Blue curves denote the contributions from graphene. Panels (a)−(j) correspond to the interface distances of 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 Å, respectively. The Fermi level is set to zero and marked by red dotted line.

    图 6  二硫化钨/石墨烯异质结中二硫化钨部分的导带底、价带顶和带隙在不同层间距的值

    Figure 6.  Conduction band minimum (CBM), valence band maximum (VBM) and band gap of WS2 monolayer in the WS2/graphene heterostructure as a function of interfacial distance.

    图 7  不同层间距下二硫化钨/石墨烯异质结沿着Z方向的平面差分电荷密度图

    Figure 7.  Plots of the plane-averaged electron density difference along the direction perpendicular to the interface of the WS2/graphene heterostructure under different interface distances of 2.4 Å to 4.2 Å, respectively.

  • [1]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys. (Berlin) 2019 1800390Google Scholar

    [2]

    Wen B, Cao M S, Lu M M , Cao W Q, Shi H L, Liu J, Wang X X, Jin H B , Fang X Y, Wang W Z , Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B, Yuan J 2018 Small 14 1800987Google Scholar

    [4]

    Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924Google Scholar

    [6]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Zhao H, Guo Q S, Xia F N, Wang H 2015 Nanophotonics 4 128Google Scholar

    [9]

    Yang L Y, Sinitsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [10]

    Zeng H L, Liu G B, Dai J F, Yan Y J, Zhu B R, He R C, Xie L S, Xu J, Chen X H, Yao W, Cui X D 2013 Sci. Rep. 3 1608Google Scholar

    [11]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311Google Scholar

    [12]

    Georgiou T, Yang H F, Jalil R, Chapman J, Novoselov K S, Mishchenko A 2014 Dalton Trans. 43 10388Google Scholar

    [13]

    Chen K T, Chang S T H 2017 Vacuum 140 172Google Scholar

    [14]

    Cong C X, Shang J Z, Wang Y L, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

    [15]

    Iqbal M W, Iqbal M Z, Khan M F 2016 RSC Adv. 6 24675Google Scholar

    [16]

    Yue Y, Chen J, Zhang Y, Ding S, Zhao F, Wang Y, Feng W 2018 ACS Appl. Mater. Interfaces DOI: 10.1021/acsami. 8b05885

    [17]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [18]

    Ma Y D, Dai Y, Guo M, Niu C W, Huang B B 2011 Nanoscale 3 3883Google Scholar

    [19]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347Google Scholar

    [20]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [21]

    Lin X, Xu Y, Hakro A A, Hasan T, Hao R, Zhang B L, Chen H S 2013 J. Mater. Chem. C 1 1618Google Scholar

    [22]

    Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo Herrero P, Leroy B J 2011 Nat. Mater. 10 282Google Scholar

    [23]

    Neek A M, Sadeghi A, Berdiyorov G R, Peeters F M 2013 Appl. Phys. Lett. 103 261904Google Scholar

    [24]

    Cai Y, Chu C P, Wei C M, Chou M Y 2013 Matter Mater. Phys. 88 245408Google Scholar

    [25]

    Zhang F, Li W, Ma Y Q, Tang Y N, Dai X Q 2017 RSC Adv. 7 29350Google Scholar

    [26]

    Tan H J, Xu W S, Sheng Y W, Lau C S, Fan Y, Chen Q, Wang X C, Zhou Y Q, Warner J H 2017 Adv. Mater. 29 1702917Google Scholar

    [27]

    危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar

    Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar

    [28]

    Jin C J, Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 19928Google Scholar

    [29]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 60271Google Scholar

    [30]

    Jiang J W 2015 Front. Phys. 10 287Google Scholar

    [31]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter. 14 2717Google Scholar

    [32]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [33]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [34]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [35]

    Ma X G, Hu J S, He H, Dong S J, Huang C Y, Chen X B 2018 ACS Appl. Nano Mater. 1 5507Google Scholar

    [36]

    Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [37]

    Hu J S, Ji G P, Ma X G, He H, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [38]

    Ding Y, Wang Y L, Ni J, Shi L, Shi S Q, Tang W H 2011 Physica B 406 2254Google Scholar

    [39]

    Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [40]

    Zhou W, Zou X L, Najmaei S 2013 Nano Lett. 13 2615Google Scholar

    [41]

    Li X E, Basile L, Huang B 2015 ACS Nano 9 8078Google Scholar

    [42]

    Wang Q H, Kalantar-Zadeh K, Kis A 2012 Nature Nanotechnol. 7 699Google Scholar

    [43]

    Zhang Y W, Li H, Wang L, Xie X M, Zhang S L, Liu R, Qiu Z J 2015 Sci. Reports 5 7938Google Scholar

    [44]

    Fang X Y, Yu X X, Zheng H M, Jin B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245Google Scholar

  • [1] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [3] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [4] Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan. Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain. Acta Physica Sinica, 2022, 71(21): 217301. doi: 10.7498/aps.71.20220882
    [5] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [6] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [7] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [8] Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan. Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations. Acta Physica Sinica, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [9] Dai Zhong-Hua, Qian Yi-Chen, Xie Yao-Ping, Hu Li-Juan, Li Xiao-Di, Ma Hai-Tao. First-principle study of effect of asymmetric biaxial tensile strain on band structure of Germanium. Acta Physica Sinica, 2017, 66(16): 167101. doi: 10.7498/aps.66.167101
    [10] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [11] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [12] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [13] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [14] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [15] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [16] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Band structure of strained Si/(111)Si1-xGex: a first principles investigation. Acta Physica Sinica, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [17] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] Quan Zhi-Jue, Sun Li-Zhong, Ye Zhen-Hua, Li Zhi-Feng, Lu Wei. Optimization design of the band profiles of HgCdTe heterojunctions. Acta Physica Sinica, 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
    [19] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [20] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
Metrics
  • Abstract views:  11765
  • PDF Downloads:  324
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2019
  • Accepted Date:  10 March 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回