引用本文: |
Citation: |
计量
- 文章访问数: 3213
- PDF下载量: 611
- 被引次数: 0
引用本文: |
Citation: |
摘要: 当静态的具有球对称性的理想流体的密度是径向坐标的函数时,Oppenheimer-Volkoff(OV) 方程成为Riccati方程-根据OV方程的一个已知特解,能将它变换成可积分的Bernoulli方程 ,严格地求得OV方程的通解和另一特解,进一步得到理想流体球的爱因斯坦场方程的内部严 格解,即度规分量的解析表示式-
Abstract: When the density of a static spherically symmetric perfect fluid is a function of the radial coordinate, the Oppenheimer-Volkoff (OV) equation turns into a Riccati equation- If a particular solution of the OV equation is given, it can be transformed into an integrable Bernoulli equation, we can obtain a general exact solution and an other particular solution of the OV equation- Further more, the exact interior solutions of Einstein field equation for the perfect fluid sphere are also obtained, i-e- the analytical expressions of the metric compone nts-