搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biot-Savart流体力学理论与索马里低空急流形成机理的研究

冯涛 冯士德

Biot-Savart流体力学理论与索马里低空急流形成机理的研究

冯涛, 冯士德
PDF
导出引用
导出核心图
  • 首先利用格子Boltzmann模型模拟了越赤道索马里低空急流对我国青藏高原东部大气环流的影响,再借助于Biot-Savart定律和流体力学理论以及美国国家环境预报中心的数据资料,研究分析了下垫面感热条件与索马里低空急流发生和发展的关系.太阳直射从南回归线逐渐向北移动过程中,索马里半岛和阿拉伯半岛地表温度逐渐增高;而在此期间,西北印度洋海表温度却增加缓慢.两半岛地表温度高的区域就会使空气上升,而海表低温区域空气就会下沉.海陆温差的增加有利于Rayleigh-Benard对流环流的生成和发展,也使得陆地和海面上正负垂直相对涡强度Γ增强.根据Biot-Savart定律,涡强度Γ的增强必然诱导出相应强大的水平速度.两半岛和海面上这一对正负相对涡度场耦合成一部高效率的"索马里抽气泵".这一抽气泵将气流从南半球吸入,在索马里沿岸附近排出.索马里半岛和阿拉伯半岛地表增温以及与西北印度洋海表温差是驱动索马里抽气泵运转的主要能源.
    • 基金项目: 国家自然科学基金重点和面上项目(批准号:40927002,40875036,40675029 )资助的课题.
    [1]

    Li X Z 1955 Modern Scientific Work in China—Meteorology (1919—1949) (Beijing: science press)p35 (in Chinese) [李宪之 1955 中国近代科学论著——气象学(1919—1949) (北京:科学出版社)第35页]

    [2]

    Zeng Q C, Li J P 2002 Chinese Journal of Atmospheric Science 26 433 (in Chinese)[曾庆存、李建平 2002 大气科学 26 433]

    [3]

    Bunker A F 1965 Proceedings of the Symposium on Meteorological Results of the International Indian Ocean Expedition (New Delhi: India Meteorological Department) p3

    [4]

    Findlater J 1966 Met. Mug. 95 353

    [5]

    Findlater J 1969 Q. J. Roy. Meteoro. Soc. 95 91

    [6]

    Cadet D, Reverdin G 1981 Tellus 33 476

    [7]

    Cadet D,Reverdin G 1981 Monthly Weather Review 109 148

    [8]

    Bannon P R 1979 J. Atmos. Sci. 36 2139

    [9]

    Bannon P R 1982 J. Atmos. Sci. 39 2267

    [10]

    Li C Y, Wu J B 2002 Chinese Journal of Atmospheric Science 26 185 (in Chinese)[李崇银、吴静波 2002 大气科学 26 185]

    [11]

    Xu X D, Zhao T L, He J H, Zhu Q G 1993 Chinese Journal of Atmospheric Science 17 641 (in Chinese) [徐祥德、赵天良、何金海、朱乾根 1993 大气科学 17 641]

    [12]

    Qian Y F, Wang Q Q, Dong Y P, Gong Y F 1987 Chinese Journal of Atmospheric Science 11 176 (in Chinese)[钱永甫、王谦谦、董一平、巩远发1987 大气科学 11 176]

    [13]

    Yi Y H, Qian Y F, Luo S W 1989 Journal of Tropical Meteorology 5 205 (in Chinese)[依育红、钱永甫、罗四维 1989 热带气象 5 205]

    [14]

    Feng S D, Dong P, Zhong L H 2008 Chin. Phys. Lett. 25 4321

    [15]

    Feng S D, Zhang Q, Ren R C 2001 Acta Phys. Sin. 50 1207(in Chinese)[冯士德、张 琼、任荣彩 2001 物理学报 50 1207]

    [16]

    Feng S D, Zhong L H, Gao S T, Dong P 2007 Acta Phys. Sin. 56 1238(in Chinese)[冯士德、钟霖浩、高守亭、 Dong Ping 2007 物理学报 56 1238]

    [17]

    Holton J R 1979 An Introduction to Dynamic Meteorology (London:Academic Press) p92

  • [1]

    Li X Z 1955 Modern Scientific Work in China—Meteorology (1919—1949) (Beijing: science press)p35 (in Chinese) [李宪之 1955 中国近代科学论著——气象学(1919—1949) (北京:科学出版社)第35页]

    [2]

    Zeng Q C, Li J P 2002 Chinese Journal of Atmospheric Science 26 433 (in Chinese)[曾庆存、李建平 2002 大气科学 26 433]

    [3]

    Bunker A F 1965 Proceedings of the Symposium on Meteorological Results of the International Indian Ocean Expedition (New Delhi: India Meteorological Department) p3

    [4]

    Findlater J 1966 Met. Mug. 95 353

    [5]

    Findlater J 1969 Q. J. Roy. Meteoro. Soc. 95 91

    [6]

    Cadet D, Reverdin G 1981 Tellus 33 476

    [7]

    Cadet D,Reverdin G 1981 Monthly Weather Review 109 148

    [8]

    Bannon P R 1979 J. Atmos. Sci. 36 2139

    [9]

    Bannon P R 1982 J. Atmos. Sci. 39 2267

    [10]

    Li C Y, Wu J B 2002 Chinese Journal of Atmospheric Science 26 185 (in Chinese)[李崇银、吴静波 2002 大气科学 26 185]

    [11]

    Xu X D, Zhao T L, He J H, Zhu Q G 1993 Chinese Journal of Atmospheric Science 17 641 (in Chinese) [徐祥德、赵天良、何金海、朱乾根 1993 大气科学 17 641]

    [12]

    Qian Y F, Wang Q Q, Dong Y P, Gong Y F 1987 Chinese Journal of Atmospheric Science 11 176 (in Chinese)[钱永甫、王谦谦、董一平、巩远发1987 大气科学 11 176]

    [13]

    Yi Y H, Qian Y F, Luo S W 1989 Journal of Tropical Meteorology 5 205 (in Chinese)[依育红、钱永甫、罗四维 1989 热带气象 5 205]

    [14]

    Feng S D, Dong P, Zhong L H 2008 Chin. Phys. Lett. 25 4321

    [15]

    Feng S D, Zhang Q, Ren R C 2001 Acta Phys. Sin. 50 1207(in Chinese)[冯士德、张 琼、任荣彩 2001 物理学报 50 1207]

    [16]

    Feng S D, Zhong L H, Gao S T, Dong P 2007 Acta Phys. Sin. 56 1238(in Chinese)[冯士德、钟霖浩、高守亭、 Dong Ping 2007 物理学报 56 1238]

    [17]

    Holton J R 1979 An Introduction to Dynamic Meteorology (London:Academic Press) p92

  • [1] 吴可, 郭汉英. Kaluza理论的运动定律. 物理学报, 1982, 31(10): 1443-1448. doi: 10.7498/aps.31.1443
    [2] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [3] 王晓冰, 吴振森, 梁子长, 张元. 超低空目标与粗糙面复合散射的波束追踪算法. 物理学报, 2012, 61(24): 244105. doi: 10.7498/aps.61.244105
    [4] 闫小勇. 社会引力定律追根溯源. 物理学报, 2020, 69(8): 088903. doi: 10.7498/aps.69.20191686
    [5] 吴福全, 彭志红, 张淳民, 赵葆常, 李英才. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [6] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究. 物理学报, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [7] 孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾. 用于相位突变界面的广义的反射定律和折射定律. 物理学报, 2013, 62(10): 104201. doi: 10.7498/aps.62.104201
    [8] 孙鑫. 违反标度定律的一种相变模型. 物理学报, 1976, 152(6): 487-493. doi: 10.7498/aps.25.487
    [9] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律. 物理学报, 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [10] 孟庆苗, 蒋继建, 刘景伦, 邓德力. 动态Dilaton-Maxwell黑洞的广义Stefan-Boltzmann定律. 物理学报, 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [11] 苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明. GeSn合金的晶格常数对Vegard定律的偏离. 物理学报, 2012, 61(17): 176104. doi: 10.7498/aps.61.176104
    [12] 陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim. Hagena团簇尺度定律中锥形喷嘴的等效孔径. 物理学报, 2013, 62(13): 133601. doi: 10.7498/aps.62.133601
    [13] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [14] 黄春佳, 厉江帆, 贺慧勇. 双波量子理论中的守恒定律. 物理学报, 2000, 49(5): 819-824. doi: 10.7498/aps.49.819
    [15] 孟庆苗. 静态球对称黑洞Dirac场的Stefan-Boltzmann定律. 物理学报, 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [16] 杜 娟, 张淳民, 孙 尧, 赵葆常. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [17] 陆全康. 关于部分电离等离子体的广义欧姆定律. 物理学报, 1977, 156(5): 417-426. doi: 10.7498/aps.26.417
    [18] 陆全康. 关于部分电离等离子体的广义欧姆定律(Ⅱ). 物理学报, 1979, 166(3): 450-454. doi: 10.7498/aps.28.450
    [19] 孟庆苗, 李中让, 李玉山. Barriola-Vilenkin黑洞Dirac场的广义Stefan-Boltzmann定律. 物理学报, 2010, 59(10): 6847-6850. doi: 10.7498/aps.59.6847
    [20] 段一士, 刘继承, 董学耕. Einstein-Cartan引力理论中的广义协变守恒定律. 物理学报, 1987, 36(6): 760-768. doi: 10.7498/aps.36.760
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3814
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-06
  • 修回日期:  2010-06-22
  • 刊出日期:  2011-02-15

Biot-Savart流体力学理论与索马里低空急流形成机理的研究

  • 1. (1)北京市气象局,北京 100089; (2)中国科学院大气物理研究所云降水物理与强风暴实验室,大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    基金项目: 

    国家自然科学基金重点和面上项目(批准号:40927002,40875036,40675029 )资助的课题.

摘要: 首先利用格子Boltzmann模型模拟了越赤道索马里低空急流对我国青藏高原东部大气环流的影响,再借助于Biot-Savart定律和流体力学理论以及美国国家环境预报中心的数据资料,研究分析了下垫面感热条件与索马里低空急流发生和发展的关系.太阳直射从南回归线逐渐向北移动过程中,索马里半岛和阿拉伯半岛地表温度逐渐增高;而在此期间,西北印度洋海表温度却增加缓慢.两半岛地表温度高的区域就会使空气上升,而海表低温区域空气就会下沉.海陆温差的增加有利于Rayleigh-Benard对流环流的生成和发展,也使得陆地和海面上正负垂直相对涡强度Γ增强.根据Biot-Savart定律,涡强度Γ的增强必然诱导出相应强大的水平速度.两半岛和海面上这一对正负相对涡度场耦合成一部高效率的"索马里抽气泵".这一抽气泵将气流从南半球吸入,在索马里沿岸附近排出.索马里半岛和阿拉伯半岛地表增温以及与西北印度洋海表温差是驱动索马里抽气泵运转的主要能源.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回