搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制

陈帝伊 申滔 马孝义

参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制

陈帝伊, 申滔, 马孝义
PDF
导出引用
  • 为了消除具有不确定参数的旋转圆盘横向混沌振动,克服其对整个系统及工作状况的不利影响,假设作用在旋转圆盘上的集中力不确定且有界,并鉴于干扰的普遍存在性,对有界扰动下的旋转圆盘横向振动的四维非线性方程进行了复杂动力学特征分析,包括相轨迹图、Lyapunov指数和庞加莱映射图,这些特征加深了对其的认识,同时也证明该四维动力系统含有混沌吸引子.为了保证系统控制的鲁棒性,利用滑模变结构法,将旋转圆盘从混沌轨道先后控制到任意固定点和周期轨道,并用MATLAB模拟验证其有效性.结果证明,用滑膜变结构法能够使系统严格地跟
    • 基金项目: 国家自然科学基金(批准号:50879072),西北农林科技大学人才专项基金(批准号: RCZX-2009-01) 资助的课题.
    [1]

    Raman A, Mote Jr C D 2002 International Journal of Nonlinear Mechanics 37 35

    [2]

    Hassan Salarieh, Hoda Sadeghian, Kaveh Merat 2009 Nonlinear Analysis: Real World Applications 10 2864

    [3]

    Aline Souza de Paula, Marcelo Amorim Savi 2009 Chaos, Solitons & Fractals 40 1376

    [4]

    Wang X F, Xue H J, Si S K, Yao Y T 2009 Acta Phys. Sin. 58 3729(in Chinese)[王校锋、薛红军、司守奎、姚跃亭 2009 物理学报 58 3729]

    [5]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [6]

    Lin, Li J F, Liu Y P, Ma J 2008 Acta Phys. Sin. 57 1404(in Chinese)[李 农、李建芬、刘宇平、马 健 2008 物理学报 57 1404]

    [7]

    Li W L, Song Y Z 2008 Acta Phys. Sin. 57 51(in Chinese)[李文林、宋运忠 2008 物理学报 57 51]

    [8]

    Günyaz Ablay 2009 Nonlinear Analysis: Hybrid Systems 3 531

    [9]

    Zhang X H, Li D 2009 Chin. Phys. B 18 1774

    [10]

    Wang C C, Pai N S, Yau H T 2010 Communications in Nonlinear Science and Numerical Simulation 15 741

    [11]

    Lu J, Lü J, XIE J, Chen G 2003 Computers & Mathematics with Applications 46 1427

    [12]

    Zhou J, Chen Z 2008 Phys. Lett. A 372 5394

    [13]

    Cheng C K, Kuo H H, Hou Y Y, Hwang C C, Liao T L 2008 Physica A 387 3093

    [14]

    Jalali M A, Angoshtari A 2006 International Journal of Nonlinear Mechanics 41 726

  • [1]

    Raman A, Mote Jr C D 2002 International Journal of Nonlinear Mechanics 37 35

    [2]

    Hassan Salarieh, Hoda Sadeghian, Kaveh Merat 2009 Nonlinear Analysis: Real World Applications 10 2864

    [3]

    Aline Souza de Paula, Marcelo Amorim Savi 2009 Chaos, Solitons & Fractals 40 1376

    [4]

    Wang X F, Xue H J, Si S K, Yao Y T 2009 Acta Phys. Sin. 58 3729(in Chinese)[王校锋、薛红军、司守奎、姚跃亭 2009 物理学报 58 3729]

    [5]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [6]

    Lin, Li J F, Liu Y P, Ma J 2008 Acta Phys. Sin. 57 1404(in Chinese)[李 农、李建芬、刘宇平、马 健 2008 物理学报 57 1404]

    [7]

    Li W L, Song Y Z 2008 Acta Phys. Sin. 57 51(in Chinese)[李文林、宋运忠 2008 物理学报 57 51]

    [8]

    Günyaz Ablay 2009 Nonlinear Analysis: Hybrid Systems 3 531

    [9]

    Zhang X H, Li D 2009 Chin. Phys. B 18 1774

    [10]

    Wang C C, Pai N S, Yau H T 2010 Communications in Nonlinear Science and Numerical Simulation 15 741

    [11]

    Lu J, Lü J, XIE J, Chen G 2003 Computers & Mathematics with Applications 46 1427

    [12]

    Zhou J, Chen Z 2008 Phys. Lett. A 372 5394

    [13]

    Cheng C K, Kuo H H, Hou Y Y, Hwang C C, Liao T L 2008 Physica A 387 3093

    [14]

    Jalali M A, Angoshtari A 2006 International Journal of Nonlinear Mechanics 41 726

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4511
  • PDF下载量:  1188
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-04
  • 修回日期:  2010-08-16
  • 刊出日期:  2011-05-15

参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制

  • 1. (1)西北农林科技大学,水利与建筑工程学院电气系,杨凌 712100; (2)西北农林科技大学,水利与建筑工程学院电气系,杨凌 712100;西北农林科技大学,机械与电子工程学院,杨凌 712100
    基金项目: 

    国家自然科学基金(批准号:50879072),西北农林科技大学人才专项基金(批准号: RCZX-2009-01) 资助的课题.

摘要: 为了消除具有不确定参数的旋转圆盘横向混沌振动,克服其对整个系统及工作状况的不利影响,假设作用在旋转圆盘上的集中力不确定且有界,并鉴于干扰的普遍存在性,对有界扰动下的旋转圆盘横向振动的四维非线性方程进行了复杂动力学特征分析,包括相轨迹图、Lyapunov指数和庞加莱映射图,这些特征加深了对其的认识,同时也证明该四维动力系统含有混沌吸引子.为了保证系统控制的鲁棒性,利用滑模变结构法,将旋转圆盘从混沌轨道先后控制到任意固定点和周期轨道,并用MATLAB模拟验证其有效性.结果证明,用滑膜变结构法能够使系统严格地跟

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回