搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiFeAs超导体中磁性与声子软化

李斌 邢钟文 刘楣

LiFeAs超导体中磁性与声子软化

李斌, 邢钟文, 刘楣
PDF
导出引用
导出核心图
  • 运用第一性原理密度泛函理论研究了铁基超导体LiFeAs的电子结构和声子谱.计算得到的LiFeAs基态具有涨落的条型反铁磁构型.通过比较LiFeAs在非磁态与条形反铁磁态下的声子态密度,发现,LiFeAs中各向异性自旋互作用的竞争产生了不稳定的自旋密度波和部分晶格位置弛豫,导致Fe和As原子振动模式的软化,从而提高电声子耦合强度.因此,自旋-声子互作用对非常规超导电性有重要贡献.
    • 基金项目: 国家自然科学基金(批准号:11074109, 110704033, 110704032), 江苏省自然科学基金 (批准号:SBK200920627) 和中国基础研究重点项目 (批准号:2010CB923404.)资助的课题.
    [1]

    Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403

    [2]

    Subedi A, Zhang L, Singh D J, Du M H 2008 Phys. Rev. B 78 134514

    [3]

    Yildirim T 2009 Phys. Rev. Lett. 102 037003

    [4]

    Huang G Q, Xing Z W, Xing D Y 2010 Phys. Rev. B 82 014511

    [5]

    Tacon M Le, Forrest T R, Rüegg Ch, Bosak A, Walters A C, Mittal R, Rnnow H M, Zhigadlo N D, Katrych S, Karpinski J, Hill J P, Krisch M, McMorrow D F 2009 Phys. Rev. B 80 220504R

    [6]

    Liu R H, Wu T, Wu G, Chen H, Wang X F, Xie Y L, Yin J J, Yan Y J, Li Q J, Shi B C, Chu W S, Wu Z Y, Chen X H 2009 Nature 459 64

    [7]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R , Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

    [8]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Advances in condensed Matter Physics 2010 164916

    [9]

    Noffsinger J, Giustino F, Louie SG, Cohen ML 2009 Phys. Rev. Lett. 102 147003

    [10]

    Zbiri M, Schober H, Johnson M R, Rols S, Mittal R, Su Y X, Rotter M, Johrendt D 2009 Phys. Rev. B 79 064511

    [11]

    Mittal R, Zbiri M, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M, Chatterji T, Matsuishi S, Hosono H, Brueckel T 2009 Phys. Rev. B 79 214514

    [12]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [13]

    Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C, Jin C Q 2009 Europhys. Lett. 87 37004

    [14]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505

    [15]

    Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H, Xue Y Y 2009 Physica C 469 326

    [16]

    Gooch M, Lv B, Tapp J H, Tang Z, Lorenz B, Guloy A M, Chu P C W 2009 Europhys. Lett. 85 27005

    [17]

    Pratt F L, Pratt F L, Baker P J, Blundell S J, Lancaster T, Lewtas H J, Adamson P, Pitcher M J, Parker D R, Clarke S J 2009 Phys. Rev. B 79 052508

    [18]

    Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R, Büchner B 2010 Phys. Rev. Lett. 105 067002

    [19]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [20]

    Chen G F, Hu W Z, Luo J L, Wang N L 2009 Phys. Rev. Lett.102 227004

    [21]

    Singh D J 2008 Phys. Rev. B 78 094511

    [22]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘 甦、李 斌、王 玮、汪 军、刘 楣 2010 物理学报 59 4245 ]

    [23]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [24]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. of Appl. Phys. 107 123906

    [25]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003

    [26]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Li Z, Tse J S, Jin C Q 2009 Phys. Rev. B 80 092503

    [29]

    Jishi R A, Alyahyaei H M 2010 Advances in Condensed Matter Physics 2010 804343

  • [1]

    Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403

    [2]

    Subedi A, Zhang L, Singh D J, Du M H 2008 Phys. Rev. B 78 134514

    [3]

    Yildirim T 2009 Phys. Rev. Lett. 102 037003

    [4]

    Huang G Q, Xing Z W, Xing D Y 2010 Phys. Rev. B 82 014511

    [5]

    Tacon M Le, Forrest T R, Rüegg Ch, Bosak A, Walters A C, Mittal R, Rnnow H M, Zhigadlo N D, Katrych S, Karpinski J, Hill J P, Krisch M, McMorrow D F 2009 Phys. Rev. B 80 220504R

    [6]

    Liu R H, Wu T, Wu G, Chen H, Wang X F, Xie Y L, Yin J J, Yan Y J, Li Q J, Shi B C, Chu W S, Wu Z Y, Chen X H 2009 Nature 459 64

    [7]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R , Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

    [8]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Advances in condensed Matter Physics 2010 164916

    [9]

    Noffsinger J, Giustino F, Louie SG, Cohen ML 2009 Phys. Rev. Lett. 102 147003

    [10]

    Zbiri M, Schober H, Johnson M R, Rols S, Mittal R, Su Y X, Rotter M, Johrendt D 2009 Phys. Rev. B 79 064511

    [11]

    Mittal R, Zbiri M, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M, Chatterji T, Matsuishi S, Hosono H, Brueckel T 2009 Phys. Rev. B 79 214514

    [12]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [13]

    Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C, Jin C Q 2009 Europhys. Lett. 87 37004

    [14]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505

    [15]

    Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H, Xue Y Y 2009 Physica C 469 326

    [16]

    Gooch M, Lv B, Tapp J H, Tang Z, Lorenz B, Guloy A M, Chu P C W 2009 Europhys. Lett. 85 27005

    [17]

    Pratt F L, Pratt F L, Baker P J, Blundell S J, Lancaster T, Lewtas H J, Adamson P, Pitcher M J, Parker D R, Clarke S J 2009 Phys. Rev. B 79 052508

    [18]

    Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R, Büchner B 2010 Phys. Rev. Lett. 105 067002

    [19]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [20]

    Chen G F, Hu W Z, Luo J L, Wang N L 2009 Phys. Rev. Lett.102 227004

    [21]

    Singh D J 2008 Phys. Rev. B 78 094511

    [22]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘 甦、李 斌、王 玮、汪 军、刘 楣 2010 物理学报 59 4245 ]

    [23]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [24]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. of Appl. Phys. 107 123906

    [25]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003

    [26]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Li Z, Tse J S, Jin C Q 2009 Phys. Rev. B 80 092503

    [29]

    Jishi R A, Alyahyaei H M 2010 Advances in Condensed Matter Physics 2010 804343

  • 引用本文:
    Citation:
计量
  • 文章访问数:  6635
  • PDF下载量:  1303
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-28
  • 修回日期:  2010-11-05
  • 刊出日期:  2011-07-15

LiFeAs超导体中磁性与声子软化

  • 1. (1)东南大学物理系,南京 211189; (2)南京大学材料科学与工程系, 南京 210093
    基金项目: 

    国家自然科学基金(批准号:11074109, 110704033, 110704032), 江苏省自然科学基金 (批准号:SBK200920627) 和中国基础研究重点项目 (批准号:2010CB923404.)资助的课题.

摘要: 运用第一性原理密度泛函理论研究了铁基超导体LiFeAs的电子结构和声子谱.计算得到的LiFeAs基态具有涨落的条型反铁磁构型.通过比较LiFeAs在非磁态与条形反铁磁态下的声子态密度,发现,LiFeAs中各向异性自旋互作用的竞争产生了不稳定的自旋密度波和部分晶格位置弛豫,导致Fe和As原子振动模式的软化,从而提高电声子耦合强度.因此,自旋-声子互作用对非常规超导电性有重要贡献.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回