搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究

刘相 谢凯 郑春满 王军

不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究

刘相, 谢凯, 郑春满, 王军
PDF
导出引用
导出核心图
  • 在惰性气氛Ar和还原性气氛H2中通过高温裂解含苯环的聚硅氧烷分别制备了硅氧碳化物Si-O-C复合负极材料,并且采用了元素分析element analysis、广角粉末X射线衍射XRD、傅里叶激光拉曼光谱Raman等手段表征了二者组成和结构的差别.实验发现,在H2气氛中裂解制备的Si-O-C复合负极含有较高的可逆、较低的不可逆容量,而且可逆容量随温度的增加而增长.其中H2气氛中1000 ℃情况下制备的Si-O-C复合负极的可逆容量622 mAh/g,首次库仑效率59%.Si-O-C复合负极的不可逆容量与氧的含量相关,可逆容量可能与碳含量及碳结构,以及SiOC中硅的结构相关.在H2气氛中制备的Si-O-C负极材料是一种潜在的锂离子电池的负极材料.
    [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • [1]

    Hou Z F, Liu H Y, Zhu Z Z, Huang M C, Yang Y 2003 Acta Phys. Sin. 52 952(in Chinese)[侯柱锋、刘慧英、朱梓忠、黄美纯、杨 勇 2003 物理学报 52 952]

    [2]

    Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W, Tan C L 2008 Acta Phys. Sin. 57 2375(in Chinese)[侯贤华、胡社军、李伟善、赵灵智、余洪文、谭春林 2008 物理学报 57 2375]

    [3]
    [4]
    [5]

    Lee H Y, Lee S M 2004 Electrochem. Commun. 6 465

    [6]

    Zhang X W, Patil P K, Wang C, Appleby A J, Little F 2004 J. Power Sources 125 206

    [7]
    [8]

    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y 2007 Nat.Nanotechnol. 3 31

    [9]
    [10]

    Kasavajjula U, Wang C, Appleby A J 2007 J. Power Sources 163 1003

    [11]
    [12]
    [13]

    Maranchi J P, Hepp A F, Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198

    [14]

    Lee K L, Jung J Y, Lee S W, Moon H S, Park J W 2004 J. Power Sources 129 270

    [15]
    [16]
    [17]

    Ohara S, Suzuki J, Sekine K, Takamura T 2004 J. Power Sources 136 303

    [18]
    [19]

    Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T 2005 J. Power Sources 146 441

    [20]

    Chen L, Wang K, Xie X, Xie J 2006 Electrochem. Solid-State Lett. 9 A512

    [21]
    [22]

    Chen L B, Yu H C, Xu C M, Wang T H 2009 Acta Phys. Sin. 58 5029 (in Chinese)[陈立宝、虞红春、许春梅、王太宏 2009 物理学报 58 5029]

    [23]
    [24]

    Dimov N, Kugino S, Yoshio M 2003 Electrochim. Acta 48 1579

    [25]
    [26]
    [27]

    Wen Z S, Yang J, Wang B F, Wang K, Liu Y 2003 Electrochem. Commun. 5 165

    [28]

    Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K 2004 Electrochem. Commun. 6 689

    [29]
    [30]
    [31]

    Wang G X, Yao J, Liu H K 2004 Electrochem. Solid-State Lett. 7 A250

    [32]

    Datta M K, Kumta P N 2006 J. Power Sources 158 557

    [33]
    [34]

    Xing W, Wilson A M, Zank G, Dahn J R 1997 Solid State Ionics 93 239

    [35]
    [36]
    [37]

    Wilson A M, Xing W, Zank G, Yates B, Dahn J R 1997 Solid State Ionics 100 259

    [38]
    [39]

    Wilson A M, Reimers J N, Fuller E W, Dahn J R 1994 Solid State Ionics 74 249

    [40]

    Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R 1997 J. Power Sources 68 195

    [41]
    [42]
    [43]

    Ning L, Wu Y, Wang L, Fang S, Holze R 2005 J. Solid State Electrochem. 9 520

    [44]

    Shen J, Ahn D, Raj R 2010 J. Power Sources 196 2875

    [45]
    [46]

    Ahn D, Raj R 2011 J. Power Sources 196 2179

    [47]
    [48]
    [49]

    Ahn D, Raj R 2010 J. Power Sources 195 3900

    [50]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2009 Chem. Lett. 38 86

    [51]
    [52]

    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M 2007 Carbon 45 477

    [53]
    [54]
    [55]

    Fukui H, Ohsuka H, Hino T, Kanamura K 2010 ACS Appl. Mater. Interfaces 2 998

    [56]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [57]
    [58]

    Soraru G D, DAndrea G, Campostrini R, Babonneau F, Mariotto G 1995 J. Am. Ceram. Soc. 78 379

    [59]
    [60]
    [61]

    Wilson A M 1994 Ph. D. Dissertation (Ottawa:Simon Fraser University)

    [62]

    Wang S, Matsumura Y, Maeda T 1995 Synth. Met. 71 1759

    [63]
    [64]

    Buiel E, George A E, Dahn J R 1998 J. Electrochem. Soc. 145 2252

    [65]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4900
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-07
  • 修回日期:  2011-02-13
  • 刊出日期:  2011-11-15

不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究

  • 1. 国防科技大学航天与材料工程学院材料科学与应用化学系,长沙 410073;
  • 2. 国防科技大学新型陶瓷纤维及复合材料国防科技重点实,长沙 410073

摘要: 在惰性气氛Ar和还原性气氛H2中通过高温裂解含苯环的聚硅氧烷分别制备了硅氧碳化物Si-O-C复合负极材料,并且采用了元素分析element analysis、广角粉末X射线衍射XRD、傅里叶激光拉曼光谱Raman等手段表征了二者组成和结构的差别.实验发现,在H2气氛中裂解制备的Si-O-C复合负极含有较高的可逆、较低的不可逆容量,而且可逆容量随温度的增加而增长.其中H2气氛中1000 ℃情况下制备的Si-O-C复合负极的可逆容量622 mAh/g,首次库仑效率59%.Si-O-C复合负极的不可逆容量与氧的含量相关,可逆容量可能与碳含量及碳结构,以及SiOC中硅的结构相关.在H2气氛中制备的Si-O-C负极材料是一种潜在的锂离子电池的负极材料.

English Abstract

参考文献 (65)

目录

    /

    返回文章
    返回