搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究

唐冬华 薛林 孙立忠 钟建新

B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究

唐冬华, 薛林, 孙立忠, 钟建新
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg0.75Cd0.25Te 中的掺杂效应.结果表明B在Hg0.75Cd0.25Te中存在着两种主要形态:第一种是在完整的 Hg0.75Cd0.25Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg0.75Cd0.25Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV.这种复合体在Hg0.75Cd0.25Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素.
    • 基金项目: 国家自然科学基金(批准号:10874143,10774127),教育部博士点新教师基金(批准号:20070530008)和湖南省高校创新平台开放基金(批准号:10K065)资助的课题.
    [1]

    Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 物理学报 53 3]

    [2]

    SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 物理学报 54 4]

    [3]

    Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 物理学报 59 2]

    [4]

    Neumark G F 1997 Mater. Sci. Eng. R 21 1

    [5]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [6]

    Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125

    [7]

    Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359

    [8]

    Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]

    [9]

    Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106

    [10]

    Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064

    [11]

    Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519

    [12]

    Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246

    [13]

    Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 物理学报 52 6]

    [14]

    Destefans G L 1983 Nucl. Instr. Methods 209/210 567

    [15]

    Destefanis G L 1988 J. Cryst. Growth 86 700

    [16]

    Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6

    [17]

    White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6

    [18]

    Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6

    [19]

    Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102

    [20]

    Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564

    [21]

    Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461

    [22]

    Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057

    [23]

    Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464

    [24]

    Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175

    [25]

    Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578

    [26]

    Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750

    [27]

    Bubulac L O 1985 Appl. Phys. Lett. 46 976

    [28]

    Bubulac L O 1988 J. Cryst. Growth 86 723

    [29]

    Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986

    [30]

    Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266

    [31]

    Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421

    [32]

    Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219

    [34]

    Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339

    [35]

    Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

    [36]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [37]

    Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213

    [38]

    Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223

    [39]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [40]

    Wei S H, Zunger A 1991 Phys. Rev. B 43 1662

  • [1]

    Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 物理学报 53 3]

    [2]

    SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 物理学报 54 4]

    [3]

    Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 物理学报 59 2]

    [4]

    Neumark G F 1997 Mater. Sci. Eng. R 21 1

    [5]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211

    [6]

    Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125

    [7]

    Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359

    [8]

    Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]

    [9]

    Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106

    [10]

    Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064

    [11]

    Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519

    [12]

    Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246

    [13]

    Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 物理学报 52 6]

    [14]

    Destefans G L 1983 Nucl. Instr. Methods 209/210 567

    [15]

    Destefanis G L 1988 J. Cryst. Growth 86 700

    [16]

    Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6

    [17]

    White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6

    [18]

    Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6

    [19]

    Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102

    [20]

    Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564

    [21]

    Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461

    [22]

    Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057

    [23]

    Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464

    [24]

    Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175

    [25]

    Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578

    [26]

    Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750

    [27]

    Bubulac L O 1985 Appl. Phys. Lett. 46 976

    [28]

    Bubulac L O 1988 J. Cryst. Growth 86 723

    [29]

    Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986

    [30]

    Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266

    [31]

    Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421

    [32]

    Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219

    [34]

    Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339

    [35]

    Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

    [36]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [37]

    Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213

    [38]

    Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223

    [39]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [40]

    Wei S H, Zunger A 1991 Phys. Rev. B 43 1662

  • [1] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [2] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] 孟凡顺, 赵星, 李久会. B掺入Cu∑5晶界间隙位性质的第一性原理研究. 物理学报, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [4] 刘颖, 刘显坤, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [5] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [6] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [7] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [8] 全知觉, 孙立忠, 叶振华, 李志锋, 陆 卫. 碲镉汞异质结能带结构的优化设计. 物理学报, 2006, 55(7): 3611-3616. doi: 10.7498/aps.55.3611
    [9] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [10] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究. 物理学报, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
    [11] 张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅. 碘化铟晶体本征缺陷的第一性原理研究. 物理学报, 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [12] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [13] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [14] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [15] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [16] 彭丽萍, 尹建武, 徐 凌. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [17] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [18] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [19] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1861
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-25
  • 修回日期:  2011-05-12
  • 刊出日期:  2012-01-05

B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究

  • 1. 湘潭大学量子工程与微纳能源技术湖南省高校重点实验室, 湘潭 411105;
  • 2. 湘潭大学材料与光电物理学院, 湘潭 411105
    基金项目: 

    国家自然科学基金(批准号:10874143,10774127),教育部博士点新教师基金(批准号:20070530008)和湖南省高校创新平台开放基金(批准号:10K065)资助的课题.

摘要: 基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg0.75Cd0.25Te 中的掺杂效应.结果表明B在Hg0.75Cd0.25Te中存在着两种主要形态:第一种是在完整的 Hg0.75Cd0.25Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg0.75Cd0.25Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV.这种复合体在Hg0.75Cd0.25Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回