搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论效应对类锂离子能级结构及辐射跃迁性质的影响

刘尚宗 颉录有 丁晓彬 董晨钟

引用本文:
Citation:

相对论效应对类锂离子能级结构及辐射跃迁性质的影响

刘尚宗, 颉录有, 丁晓彬, 董晨钟

The effect of relativity on the structures and transition properties of Li-like ions

Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong
PDF
导出引用
  • 利用基于多组态Dirac-Hartree-Fock(MCDHF) 理论方法的相对论原子结构计算程序包GRASP2K, 细致计算了中性锂原子、类锂Be+, C3+, O5+, Ne7+, Ar15+, Fe23+, Mo39+, W71+及U89+ 离子基组态及较低的激发组态1s2nl (n = 24, l =s,p,d,f) 的精细结构能级, 以及各能级间发生电偶极(E1) 自发辐射跃迁的能量、概率及振子强度. 同时, 在非相对论极限下, 计算了其相关原子参数. 通过对相对论及非相对论计算结果的比较, 系统研究了相对论效应对类锂等电子系列离子能级结构及E1跃迁性质的影响, 揭示了随原子核电荷数Z变化时, 跃迁能、振子强度强烈依赖于量子数n, l, j变化的规律; 同时, 目前的计算结果与其他已有的理论计算及实验测量结果进行了比较.
    The transition energies, probabilities, and oscillator strengths for the electric dipole (E1) transitions between all levels of the ground state and the low-lying excited states of 1s2nl (n=24, l= s, p, d, f) configurations of Li atom and Li-like ions(Be+, C3+, O5+, Ne7+, Ar15+, Fe23 +, Mo39+, W71+, U89+) have been calculated, using the relativistic atomic computational code GRASP2K, which based on the Multi-configuration Dirac-Hartree-Fock (MCDHF) method. The norelativistic results for all of those transitions have been also obtained for comparative purposes by performing the similar calculations in the non-relativistic limit. The effects of relativity on the E1 transition energies and oscillator strengths of Li-like isoelectronic sequence are discussed with a particular emphasis, and some important conclusions are drawn. Comparison of the present results with other available data is also made, good agreement is obtained.
    • 基金项目: 国家自然科学基金(批准号:10875017, 10876028, 10964010, 91126007)和甘肃省高等学校科研业务费专项基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875017, 10876028, 10964010, 91126007), and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province of China.
    [1]

    Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589

    [2]

    Johnson W R, Huang K N 1975 Phys. Rev. L 48 315

    [3]

    Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109

    [4]

    Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958

    [5]

    Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034

    [6]

    Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114

    [7]

    Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139

    [8]

    Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578

    [9]

    Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547

    [10]

    Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501

    [11]

    Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144

    [12]

    Seely J F 1989 Phys. Rev. A 39 3682

    [13]

    Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502

    [14]

    Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514

    [15]

    Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263

    [16]

    Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686

    [17]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111

    [18]

    Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18

    [19]

    Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208

    [20]

    Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69

    [21]

    Fricke B 1984 Phys. Scr. T8 129

    [22]

    Fritzsche S 2002 Phys. Scr. T100 37

    [23]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)

    [24]

    Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207

    [25]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425

    [27]

    Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455

    [28]

    http: //www.nist.gov/pml/data/asd.cfm

    [29]

    Gillaspy J D 2001 J. Phys. B 34 R93

    [30]

    Voge M, Quint W 2010 Physics Reports 490 1

    [31]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451

    [32]

    Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297

  • [1]

    Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589

    [2]

    Johnson W R, Huang K N 1975 Phys. Rev. L 48 315

    [3]

    Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109

    [4]

    Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958

    [5]

    Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034

    [6]

    Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114

    [7]

    Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139

    [8]

    Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578

    [9]

    Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547

    [10]

    Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501

    [11]

    Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144

    [12]

    Seely J F 1989 Phys. Rev. A 39 3682

    [13]

    Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502

    [14]

    Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514

    [15]

    Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263

    [16]

    Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686

    [17]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111

    [18]

    Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18

    [19]

    Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208

    [20]

    Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69

    [21]

    Fricke B 1984 Phys. Scr. T8 129

    [22]

    Fritzsche S 2002 Phys. Scr. T100 37

    [23]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)

    [24]

    Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207

    [25]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425

    [27]

    Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455

    [28]

    http: //www.nist.gov/pml/data/asd.cfm

    [29]

    Gillaspy J D 2001 J. Phys. B 34 R93

    [30]

    Voge M, Quint W 2010 Physics Reports 490 1

    [31]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451

    [32]

    Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297

计量
  • 文章访问数:  3540
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-30
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

相对论效应对类锂离子能级结构及辐射跃迁性质的影响

  • 1. 甘肃省原子分子物理与功能材料重点实验室, 西北师范大学物理与电子工程学院, 兰州 730070
    基金项目: 

    国家自然科学基金(批准号:10875017, 10876028, 10964010, 91126007)和甘肃省高等学校科研业务费专项基金资助的课题.

摘要: 利用基于多组态Dirac-Hartree-Fock(MCDHF) 理论方法的相对论原子结构计算程序包GRASP2K, 细致计算了中性锂原子、类锂Be+, C3+, O5+, Ne7+, Ar15+, Fe23+, Mo39+, W71+及U89+ 离子基组态及较低的激发组态1s2nl (n = 24, l =s,p,d,f) 的精细结构能级, 以及各能级间发生电偶极(E1) 自发辐射跃迁的能量、概率及振子强度. 同时, 在非相对论极限下, 计算了其相关原子参数. 通过对相对论及非相对论计算结果的比较, 系统研究了相对论效应对类锂等电子系列离子能级结构及E1跃迁性质的影响, 揭示了随原子核电荷数Z变化时, 跃迁能、振子强度强烈依赖于量子数n, l, j变化的规律; 同时, 目前的计算结果与其他已有的理论计算及实验测量结果进行了比较.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回