搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由质点测地线仿射参量时空坐标系

卞保民 赖小明 杨玲 李振华 贺安之

自由质点测地线仿射参量时空坐标系

卞保民, 赖小明, 杨玲, 李振华, 贺安之
PDF
导出引用
  • 以时序t为自变量,可给出自由质点空间测地线的参数方程组{Xi(t)},借助于仿射参量R(t)变换实现测地线微分方程的齐次化, 推导出仿射参量R满足的一阶微分方程、获得以有理数Cu为标志的序列解析解R.基于R定义平直四维坐标系{t,r,θ,φ}的空间距离单位,建立自由质点测地线仿射参量时空坐标系{t,ξ,θ,φ}.研究{t,ξ,θ,φ}中狭义相对论时空间隔模型度规张量g的对角化过程, 发现与对角化度规对应的特征量t1(t,ξ), τ1(τ,ξ),tt(t,τ,ξ),ττ1(t,τ,ξ); 从而推出时空坐标系{t,ξ,θ,φ}维数小于4.
    [1]

    Weinberg S 1980 Gravitation and Cosmology (1st Ed.) (Beijing: Science Press) p168, 468 (in Chinese) [温伯格 S 1980 引力论和宇宙论 (第一版) (北京:科学出版社) 第168, 468页]

    [2]

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p69, 190, 192 (in Chinese) [梁灿彬, 周彬 2006 微分几何入门与广义相对论(北京:科学出版社) 第69, 190, 192页]

    [3]

    Pope A C, Matsubara T, Szalay A S, Blanton M R, Eisenstein D J, Gray J, Lain B, Bahcall N A, Brinkmann J, Budavari T, Connolly A J, Frieman J A, Gunn J E, Johnston D, KentS M, Lupton R H, Meiksin A, Nichol R C, Scranton R, Strauss M A, Szapudi I, Tegmark M, Vogeley M S, Weinberg D H, Zehavi I 2004 Astrophys J. 607 655

    [4]

    Bennett C L, Hill R S, Hinshaw G, Nolta M R, Odegard N, Page L, Spergel D N, Weiland J L, Wright E L, Halpem M, Larosik N, Kogut A, Limon M, Meyer S S, Tucker G S, Wollack E 2003 The Astrophysical Journal 148 97

    [5]

    Mather J C, Cheng E S, Cottingham D A, Eplee R E, Fixsen D J, Hewagama T 1994 The Amer. Astro. Soc. 420 439

    [6]

    Benítez N, Riess A, Nugent P, Dickingson M, Chornock E, Filippenko V 2002 The Astrophysical Journal 577 L1

    [7]

    Riess A G, Filippenko A V, Challis P, Clocchiattia A, Diereks A, Gamavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Lebundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B, Tonry J 1998 Astron. J. 116 1009

    [8]

    Schmidt B P, Suntzeff N B, Phillips M M, Schommer R A, Clocchiatti A, Kirshner R P, Garnavich P, Challis P, Leibundgut B, Spyromilio J, Riess A G, Filippenko A V, Hamuy M, Smith R C, Hogan C, Stubbs C, Diercks A, Reiss D, Gilliland R, Tonry J, Maza J, Dressler A, Walsh J, Ciardullo R 1998 The Astrophysical Journal 507 46

    [9]

    Cai R G 2007 Phys. Lett. B 657 228

    [10]

    Zhai X H, Zhao Y B 2006 Chin. Phys. 15 2465

    [11]

    Feng B, Wang X L, ZhangX M 2005 Phys. Lett. B 607 35

    [12]

    Li M 2004 Phys. Lett. B 603 1

    [13]

    Carroll S M 2001 Living Rev. Rel 4 1

    [14]

    Kamenshchik A Y, Moschella U, Pasquier V 2001 Phys. Lett. B 511 265

    [15]

    Nottale L 2010 Found. Sci. 15 101

    [16]

    Sorrell W H 2009 Astrophys. Space. Sci. 323 205

    [17]

    Avinash K, Rvachev V L 2000 Foundations of Physics 30 139

    [18]

    Hawking S W, Ellis G F R 2006 The Large Scale Structure of Space-Time (Changsha: Hunan Science and Technology Press) p30 (in Chinese) [霍金 S W, 埃利斯 G F R 2006 时空的大尺度结构(长沙:湖南科学技术出版社) 第30页]

    [19]

    Lai X M, Bian B M, Yang L, Yang J, Bian N, Li Z H, He A Z 2008 Acta. Phys. Sin. 57 7955 (in Chinese) [赖小明, 卞保民, 杨玲, 杨娟, 卞牛, 李振华, 贺安之 2008 物理学报 57 7955]

    [20]

    Bian B M, Lai X M, Yang L, Li Z H, He A Z 2012 Acta. Phys. Sin. 61 080401 (in Chinese) [卞保民, 赖小明, 杨玲, 李振华, 贺安之 2012 物理学报 61 080401]

    [21]

    Yu Y Q 1997 Introduction of general relativity (Beijing: Peking University Press) p18, 133, 158 (in Chinese) [愈允强 1997 广义相对论引论 (北京:北京大学出版社) 第18, 133, 158页]

    [22]

    Zhu H, Ji C C 2011 Fractal theory and its applications (Beijing: Science Press) p23 (in Chinese)[朱华, 姬翠翠 2011 分形理论及应用(北京:科学出版社) 第23页]

    [23]

    Yu Y Q 2002 Cosmophysics lectures (Beijing: Peking University Press) p104, 105, 214 (in Chinese)[俞允强 2002 物理宇宙学讲义(北京:北京大学出版社) 第104, 105, 214页]

  • [1]

    Weinberg S 1980 Gravitation and Cosmology (1st Ed.) (Beijing: Science Press) p168, 468 (in Chinese) [温伯格 S 1980 引力论和宇宙论 (第一版) (北京:科学出版社) 第168, 468页]

    [2]

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p69, 190, 192 (in Chinese) [梁灿彬, 周彬 2006 微分几何入门与广义相对论(北京:科学出版社) 第69, 190, 192页]

    [3]

    Pope A C, Matsubara T, Szalay A S, Blanton M R, Eisenstein D J, Gray J, Lain B, Bahcall N A, Brinkmann J, Budavari T, Connolly A J, Frieman J A, Gunn J E, Johnston D, KentS M, Lupton R H, Meiksin A, Nichol R C, Scranton R, Strauss M A, Szapudi I, Tegmark M, Vogeley M S, Weinberg D H, Zehavi I 2004 Astrophys J. 607 655

    [4]

    Bennett C L, Hill R S, Hinshaw G, Nolta M R, Odegard N, Page L, Spergel D N, Weiland J L, Wright E L, Halpem M, Larosik N, Kogut A, Limon M, Meyer S S, Tucker G S, Wollack E 2003 The Astrophysical Journal 148 97

    [5]

    Mather J C, Cheng E S, Cottingham D A, Eplee R E, Fixsen D J, Hewagama T 1994 The Amer. Astro. Soc. 420 439

    [6]

    Benítez N, Riess A, Nugent P, Dickingson M, Chornock E, Filippenko V 2002 The Astrophysical Journal 577 L1

    [7]

    Riess A G, Filippenko A V, Challis P, Clocchiattia A, Diereks A, Gamavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Lebundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B, Tonry J 1998 Astron. J. 116 1009

    [8]

    Schmidt B P, Suntzeff N B, Phillips M M, Schommer R A, Clocchiatti A, Kirshner R P, Garnavich P, Challis P, Leibundgut B, Spyromilio J, Riess A G, Filippenko A V, Hamuy M, Smith R C, Hogan C, Stubbs C, Diercks A, Reiss D, Gilliland R, Tonry J, Maza J, Dressler A, Walsh J, Ciardullo R 1998 The Astrophysical Journal 507 46

    [9]

    Cai R G 2007 Phys. Lett. B 657 228

    [10]

    Zhai X H, Zhao Y B 2006 Chin. Phys. 15 2465

    [11]

    Feng B, Wang X L, ZhangX M 2005 Phys. Lett. B 607 35

    [12]

    Li M 2004 Phys. Lett. B 603 1

    [13]

    Carroll S M 2001 Living Rev. Rel 4 1

    [14]

    Kamenshchik A Y, Moschella U, Pasquier V 2001 Phys. Lett. B 511 265

    [15]

    Nottale L 2010 Found. Sci. 15 101

    [16]

    Sorrell W H 2009 Astrophys. Space. Sci. 323 205

    [17]

    Avinash K, Rvachev V L 2000 Foundations of Physics 30 139

    [18]

    Hawking S W, Ellis G F R 2006 The Large Scale Structure of Space-Time (Changsha: Hunan Science and Technology Press) p30 (in Chinese) [霍金 S W, 埃利斯 G F R 2006 时空的大尺度结构(长沙:湖南科学技术出版社) 第30页]

    [19]

    Lai X M, Bian B M, Yang L, Yang J, Bian N, Li Z H, He A Z 2008 Acta. Phys. Sin. 57 7955 (in Chinese) [赖小明, 卞保民, 杨玲, 杨娟, 卞牛, 李振华, 贺安之 2008 物理学报 57 7955]

    [20]

    Bian B M, Lai X M, Yang L, Li Z H, He A Z 2012 Acta. Phys. Sin. 61 080401 (in Chinese) [卞保民, 赖小明, 杨玲, 李振华, 贺安之 2012 物理学报 61 080401]

    [21]

    Yu Y Q 1997 Introduction of general relativity (Beijing: Peking University Press) p18, 133, 158 (in Chinese) [愈允强 1997 广义相对论引论 (北京:北京大学出版社) 第18, 133, 158页]

    [22]

    Zhu H, Ji C C 2011 Fractal theory and its applications (Beijing: Science Press) p23 (in Chinese)[朱华, 姬翠翠 2011 分形理论及应用(北京:科学出版社) 第23页]

    [23]

    Yu Y Q 2002 Cosmophysics lectures (Beijing: Peking University Press) p104, 105, 214 (in Chinese)[俞允强 2002 物理宇宙学讲义(北京:北京大学出版社) 第104, 105, 214页]

  • [1] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 空间变尺度因子球坐标系与四维时空度规. 物理学报, 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [2] 陈 光. 离散时空中的非塌缩的尘埃球解. 物理学报, 2005, 54(7): 2971-2976. doi: 10.7498/aps.54.2971
    [3] 向茂槐, 陈菊华, 王永久. 含整体单极子黑洞场中的吸附和辐射. 物理学报, 2011, 60(9): 090401. doi: 10.7498/aps.60.090401
    [4] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [5] 钟鸣乾. 行星重力的后牛顿近似对卫星作用的估计. 物理学报, 2001, 50(12): 2497-2500. doi: 10.7498/aps.50.2497
    [6] 刘音华, 李孝辉. 超高精度空间站共视时间比对新方法. 物理学报, 2018, 67(19): 190601. doi: 10.7498/aps.67.20180842
    [7] 王永久, 李爱根, 龚添喜, 陈菊华. 一类无奇点宇宙模型. 物理学报, 2010, 59(2): 712-715. doi: 10.7498/aps.59.712
    [8] 王永久, 唐智明. 一类宇宙模型的稳定性. 物理学报, 2001, 50(10): 1829-1832. doi: 10.7498/aps.50.1829
    [9] 崔世治. 北京光速各向异性实验的广义相对论(及度规理论)预言值. 物理学报, 1989, 38(11): 1882-1885. doi: 10.7498/aps.38.1882
    [10] 李宗诚. 耗散系统不可逆过程中的可拓展广义相对论时空关系. 物理学报, 2003, 52(4): 767-773. doi: 10.7498/aps.52.767
    [11] 陶必修, 陶必友. 广义相对论“星系长城”. 物理学报, 1996, 45(7): 1091-1099. doi: 10.7498/aps.45.1091
    [12] 郭汉英, 黄超光, 田 雨, 徐 湛, 周 彬. Beltrami-de Sitter时空和de Sitter不变的狭义相对论. 物理学报, 2005, 54(6): 2494-2504. doi: 10.7498/aps.54.2494
    [13] 郭汉英, 吴詠时, 李根道. 广义相对论的旋量和复矢量形式. 物理学报, 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
    [14] 刘文森. 广义相对论中能量的定域性. 物理学报, 1983, 32(4): 515-519. doi: 10.7498/aps.32.515
    [15] 唐智明, 王永久. 广义相对论中加速电荷的辐射. 物理学报, 1999, 48(4): 561-565. doi: 10.7498/aps.48.561
    [16] 吴亚波, 邓雪梅, 赵国明, 李 松, 吕剑波, 杨秀一. Clifford代数中的双曲相位变换群及其在四维相对论时空中的应用. 物理学报, 2005, 54(11): 4994-4998. doi: 10.7498/aps.54.4994
    [17] 段一士, 冯世祥. 广义相对论中广义协变的角动量守恒定律. 物理学报, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [18] 黄超光, 王永成. 两个共线Kerr黑洞度规迭加的时空结构. 物理学报, 1986, 35(10): 1322-1329. doi: 10.7498/aps.35.1322
    [19] 赵 仁, 刘 辽. 考虑Hawking蒸发对Schwarzschild时空反作用后的静态球对称度规. 物理学报, 1998, 47(12): 2074-2078. doi: 10.7498/aps.47.2074
    [20] 褚耀泉, 程福臻, 方励之. 广义相对论中负指数多层球的结构及稳定性. 物理学报, 1980, 29(1): 64-72. doi: 10.7498/aps.29.64
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2318
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-07
  • 修回日期:  2012-02-23
  • 刊出日期:  2012-09-05

自由质点测地线仿射参量时空坐标系

  • 1. 南京理工大学信息物理与工程系, 南京 210094

摘要: 以时序t为自变量,可给出自由质点空间测地线的参数方程组{Xi(t)},借助于仿射参量R(t)变换实现测地线微分方程的齐次化, 推导出仿射参量R满足的一阶微分方程、获得以有理数Cu为标志的序列解析解R.基于R定义平直四维坐标系{t,r,θ,φ}的空间距离单位,建立自由质点测地线仿射参量时空坐标系{t,ξ,θ,φ}.研究{t,ξ,θ,φ}中狭义相对论时空间隔模型度规张量g的对角化过程, 发现与对角化度规对应的特征量t1(t,ξ), τ1(τ,ξ),tt(t,τ,ξ),ττ1(t,τ,ξ); 从而推出时空坐标系{t,ξ,θ,φ}维数小于4.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回