搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于电路量子电动力学系统中光子自由度的消除方案

孟建宇 王培月 冯伟 杨国建 李新奇

关于电路量子电动力学系统中光子自由度的消除方案

孟建宇, 王培月, 冯伟, 杨国建, 李新奇
PDF
导出引用
导出核心图
  • 基于超导传输线和超导量子比特相互耦合的电路量子电动力学(quantum Electrodynamics, QED)系统, 是目前固态量子信息领域的一个倍受关注的物理系统, 也是研究量子测量和量子控制的理想实验平台. 由于其中涉及的驱动场和超导传输线谐振腔支持的光子频率都在微波区, 在量子测量和量子控制研究中往往遇到 大量光子数引起的状态空间维数过大带来的数值模拟方面的困难. 为了避免这个困难, 往往采取"消除"光子自由度的办法, 建立一个只保留量子比特状态自由度的有效描述方案. 本文通过对单比特的量子测量动力学的数值模拟, 检验了 "绝热消除"和"极化子变换"两种方案的适用条件. 结果表明, 在量子非破坏(quantum non-demolition, QND) 测量情况下, 极化子变换精确适用于 任意驱动强度和任意(光子)泄漏速率微腔; 但在非QND测量情况下, 极化子变换相对通常的绝热消除方案, 并无优势. 在强泄漏微腔和弱耦合情况下, 两种消除光子自由度的方法都可以较好地描述 测量动力学; 但如果微腔光子泄漏速率不是很大或量子比特与微腔耦合较强, 则需要纳入光子自由度做完整模拟, 此时的量子测量属性是一个尚待研究的课题.
    • 基金项目: 国家自然科学基金(批准号: 101202101, 10874176)和国家重点基础研究发展计划(批准号: 2011CB808502, 2012CB932704)资助的课题.
    [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于多比特电路量子动力学系统中光子自由度的消除方案研究. 物理学报, 2012, 61(24): 240305. doi: 10.7498/aps.61.240305
    [2] D.vanEffenterre, 张俊香, 张天才, 谢常德, 彭堃墀. 常温下LED串接放大实现QND光学测量. 物理学报, 2000, 49(2): 226-230. doi: 10.7498/aps.49.226
    [3] 林仁明, 张林. 受驱动光学系统多光子量子统计理论(Ⅲ)——绝热消除方法的改进. 物理学报, 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [4] 陈开茅, 秦国刚, 王忠安, 金泗轩. 消除载流子分布的不均匀性的影响准确测量深中心俘获载流子的截面. 物理学报, 1984, 33(4): 486-495. doi: 10.7498/aps.33.486
    [5] 任敬儒. 在核乳胶中畸变和噪音对多次库仑散射测量的影响及其消除. 物理学报, 1964, 102(1): 83-90. doi: 10.7498/aps.20.83
    [6] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除. 物理学报, 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [7] 潘金声. 极性晶体的表面或界面极化子. 物理学报, 1982, 31(3): 335-347. doi: 10.7498/aps.31.335
    [8] 邢定钰, 龚昌德. 1:3 Peierls系统中的极化子. 物理学报, 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [9] 李景德, 陆夏莲, 雷德铭. 高绝缘体中的极化子. 物理学报, 1992, 41(11): 1898-1905. doi: 10.7498/aps.41.1898
    [10] 汪克林, 陈庆虎, 完绍龙. 极化子新的变分计算. 物理学报, 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [11] 许宗荣, 田之悦. 一维分子链中的极化子. 物理学报, 1995, 44(9): 1467-1470. doi: 10.7498/aps.44.1467
    [12] 管勇, 阮军. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移的研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191800
    [13] 高 琨, 刘晓静, 刘德胜, 解士杰. 极化子单激发态的反向极化研究. 物理学报, 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [14] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子. 物理学报, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
    [15] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [16] 汝鸿羽, 齐 亮, 季敏标, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁, 白 云, 刘新元, 何定武, 赵 巍. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [17] 顾世洧. 极化子有效质量与温度的关系. 物理学报, 1980, 176(5): 609-617. doi: 10.7498/aps.29.609
    [18] 罗质华, 余超凡, 林洽武. Fröhlich 极化子的非经典基态. 物理学报, 2011, 60(5): 057104. doi: 10.7498/aps.60.057104
    [19] 金佩琬, 陈传誉. 二维极化子在磁场中的基态能量. 物理学报, 1990, 39(5): 814-822. doi: 10.7498/aps.39.814
    [20] 李富斌. Fr?hlich极化子的能带非抛物性效应理论. 物理学报, 1991, 40(4): 610-615. doi: 10.7498/aps.40.610
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1966
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-27
  • 修回日期:  2012-03-13
  • 刊出日期:  2012-09-20

关于电路量子电动力学系统中光子自由度的消除方案

  • 1. 北京师范大学物理系, 北京 100875
    基金项目: 

    国家自然科学基金(批准号: 101202101, 10874176)和国家重点基础研究发展计划(批准号: 2011CB808502, 2012CB932704)资助的课题.

摘要: 基于超导传输线和超导量子比特相互耦合的电路量子电动力学(quantum Electrodynamics, QED)系统, 是目前固态量子信息领域的一个倍受关注的物理系统, 也是研究量子测量和量子控制的理想实验平台. 由于其中涉及的驱动场和超导传输线谐振腔支持的光子频率都在微波区, 在量子测量和量子控制研究中往往遇到 大量光子数引起的状态空间维数过大带来的数值模拟方面的困难. 为了避免这个困难, 往往采取"消除"光子自由度的办法, 建立一个只保留量子比特状态自由度的有效描述方案. 本文通过对单比特的量子测量动力学的数值模拟, 检验了 "绝热消除"和"极化子变换"两种方案的适用条件. 结果表明, 在量子非破坏(quantum non-demolition, QND) 测量情况下, 极化子变换精确适用于 任意驱动强度和任意(光子)泄漏速率微腔; 但在非QND测量情况下, 极化子变换相对通常的绝热消除方案, 并无优势. 在强泄漏微腔和弱耦合情况下, 两种消除光子自由度的方法都可以较好地描述 测量动力学; 但如果微腔光子泄漏速率不是很大或量子比特与微腔耦合较强, 则需要纳入光子自由度做完整模拟, 此时的量子测量属性是一个尚待研究的课题.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回