搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对超薄铜膜疲劳性能影响的分子动力学模拟

郭巧能 曹义刚 孙强 刘忠侠 贾瑜 霍裕平

温度对超薄铜膜疲劳性能影响的分子动力学模拟

郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平
PDF
导出引用
导出核心图
  • 用嵌入原子势的分子动力学方法模拟了温度对超薄铜膜疲劳性能的影响. 通过模拟, 首先给出了超薄铜膜的总能及应力随循环周次的变化曲线; 根据叠加经验式得出的叠加量随循环周次变化曲线, 判断出各种恒定温度下超薄铜膜的疲劳寿命. 由 200–400 K温度范围内超薄铜膜的疲劳寿命-温度变化曲线, 可以发现存在两个温度区域: 在约370 K以下, 超薄铜膜的疲劳寿命随温度升高缓慢增加, 而在约370 K以上增加较快. 建立了模型并用位错演化机制解释了超薄铜膜疲劳寿命的温度依赖关系.
    • 基金项目: 河南省教育厅科学技术研究重点项目(批准号: 13A140674, 12A140012) 和教育部科研基金(批准号: 20114101110001)资助的课题.
    [1]

    Nix W D, Mehl Medalist R F 1989 Metall. Trans. A 20 2217

    [2]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010 物理学报 59 8836]

    [3]

    Zhang G P, Schwaiger R, Volkert C A, Kraft O 2003 Philos. Mag. Lett. 83 477

    [4]

    Nicola L, Giessen E V, Needleman A 2003 J. Appl. Phys. 93 5920

    [5]

    Nicola L, Xiang Y, Vlassak J J, van der Giessen E, Needleman A 2006 J. Mech. Phys. Solids 54 2089

    [6]

    Tanimoto H, Fujiwara K, Mizubayashi H 2005 Sci. Tech. Adv. Mater. 6 620

    [7]

    Huang H B, Spaepen F 2000 Acta Mater. 4 3261

    [8]

    Balk T J, Dehm G, Arzt E 2003 Acta Mater. 51 4471

    [9]

    Espinosa H D, Prorok B C, Peng B 2004 J. Mech. Phys. Solids 52 667

    [10]

    Gruber P A, Bohm J, Onuseit F, Wanner A, Spolenak R, Arzt E 2008 Acta Mater. 56 2318

    [11]

    Read D, Geiss R, Ramsey J, Scherban T, Xu G, Blaine J, Miner B, Emery R D 2003 Mat. Res. Soc. Symp. Proc. 778 93

    [12]

    Florando J N, Nix W D 2005 J. Mech. Phys. Solids 53 619

    [13]

    Kraft O, Wellner P, Hommel M, Schwaiger R, Arzt E 2002 Z. Metallkd. 93 392

    [14]

    Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O 2005 J. Mater. Res. 20 201

    [15]

    Zhang B, Sun K H, Gong J, Sun C, Wang Z G, Zhang G P 2007 Key Eng. Mater. 353-358 116

    [16]

    Kraft O, Schwaiger R, Wellner P 2001 Mater. Sci. Eng. A 319-321 919

    [17]

    Maier H J, Gabor P, Gupta N, Karaman I, Haouaoui M 2006 Int. J. Fatigue 28 243

    [18]

    Keller R R, Phelps J M, Read D T 1996 Mater. Sci. Eng. A 214 42

    [19]

    Read D T 1998 Int. J. Fatigue 20 203

    [20]

    Merchant H D, Minor M G, Liu Y L 1999 J. Electron. Mater. 28 998

    [21]

    Merchant H D, Khatibi G, Weiss B 2004 J. Mater. Sci. 39 4157

    [22]

    Chang W J, Fang T H 2003 J. Phys. Chem. Solids 64 1279

    [23]

    Zhu T, Li J, Samanta A, Leach A, Gall K 2008 Phys. Rev. Lett. 100 025502

    [24]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [25]

    Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M 2003 Science 300 1275

    [26]

    Gruber P A, Solenthaler C, Arzt E, Spolenak R 2008 Acta Mater. 56 1876

    [27]

    Yang D Z 1991 Dislocations and Metal Strengthening Mechanisms (Harbin: Harbin Institute of Technology Press) (in Chinese) [杨德庄 1991 位错与金属强化机制 (哈尔滨: 哈尔滨工业大学出版社)]

    [28]

    Ju C C, Chen D L, Chen T C 2001 Proceedings of The 18th CSME National Conference on Mechanical Engineering Taipei, Taiwan, December 7-8, 2001 p159

    [29]

    Lin Z C, Huang J C 2004 Nanotechnology 15 1509

    [30]

    Lin Z C, Huang J C 2004 Nanotechnology 15 510

    [31]

    Komanduri R, Chandrasekaran N, Raff L M 2001 Int. J. Mech. Sci. 43 2237

    [32]

    Chen D L, Ju C C, Chen T C 2001 Proceedings of The 18th CSME National Conference on Mechanical Engineering Taipei, Taiwan, December 7-8, 2001 p1063

    [33]

    Chang W J, Fang T H 2003 J. Phys. Chem. Solids 64 1279

    [34]

    Ma X L, Yang W 2003 Nanotechnology 14 1208

    [35]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Oxford University Press)

    [36]

    Melchionna S, Ciccotti G, Holian B L 1993 Mol. Phys. 78 533

    [37]

    Schiotz J 2001 Phil. Mag. Lett. 81 301

    [38]

    Kolluri K, Gungor M R, Maroudas D 2007 Appl. Phys. Lett. 90 221907

    [39]

    Zhou S J, Preston D L, Lomdahl P S, Beazley D M 1998 Science 279 1525

    [40]

    Zhou S J, Preston D L, Louchet F 1999 Acta Mater. 47 2695

    [41]

    Li M, Chu W Y, Gao K W, Qiao L J 2003 J. Phys.: Condens. Matter 15 3391

    [42]

    Vegge T, Jacobsen W 2002 J. Phys.: Condens. Matter 14 2929

    [43]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [44]

    Schwaiger R, Kraft O 1999 Scripta Mater. 41 823

    [45]

    Zhang G P, Volkert C A, Schwaiger R, Wellner P, Arzt E, Kraft O 2006 Acta Mater. 54 3127

    [46]

    Polak J 1987 Mater. Sci. Eng. A 92 71

    [47]

    Essmann U, Gosele U, Mughrabi H 1981 Phil. Mag. A 44 405

    [48]

    Essmann U, Mughrabi H 1979 Phil. Mag. A 40 731

    [49]

    Simmons R O, Balluffi R W 1960 Phys. Rev. 117 52

    [50]

    Kwon L E, Fine M E, Weertman J 1989 Acta Metall. 37 2937

  • [1]

    Nix W D, Mehl Medalist R F 1989 Metall. Trans. A 20 2217

    [2]

    He A M, Shao J L, Wang P, Qin C S 2010 Acta Phys. Sin. 59 8836 (in Chinese) [何安民, 邵建立, 王裴, 秦承森 2010 物理学报 59 8836]

    [3]

    Zhang G P, Schwaiger R, Volkert C A, Kraft O 2003 Philos. Mag. Lett. 83 477

    [4]

    Nicola L, Giessen E V, Needleman A 2003 J. Appl. Phys. 93 5920

    [5]

    Nicola L, Xiang Y, Vlassak J J, van der Giessen E, Needleman A 2006 J. Mech. Phys. Solids 54 2089

    [6]

    Tanimoto H, Fujiwara K, Mizubayashi H 2005 Sci. Tech. Adv. Mater. 6 620

    [7]

    Huang H B, Spaepen F 2000 Acta Mater. 4 3261

    [8]

    Balk T J, Dehm G, Arzt E 2003 Acta Mater. 51 4471

    [9]

    Espinosa H D, Prorok B C, Peng B 2004 J. Mech. Phys. Solids 52 667

    [10]

    Gruber P A, Bohm J, Onuseit F, Wanner A, Spolenak R, Arzt E 2008 Acta Mater. 56 2318

    [11]

    Read D, Geiss R, Ramsey J, Scherban T, Xu G, Blaine J, Miner B, Emery R D 2003 Mat. Res. Soc. Symp. Proc. 778 93

    [12]

    Florando J N, Nix W D 2005 J. Mech. Phys. Solids 53 619

    [13]

    Kraft O, Wellner P, Hommel M, Schwaiger R, Arzt E 2002 Z. Metallkd. 93 392

    [14]

    Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O 2005 J. Mater. Res. 20 201

    [15]

    Zhang B, Sun K H, Gong J, Sun C, Wang Z G, Zhang G P 2007 Key Eng. Mater. 353-358 116

    [16]

    Kraft O, Schwaiger R, Wellner P 2001 Mater. Sci. Eng. A 319-321 919

    [17]

    Maier H J, Gabor P, Gupta N, Karaman I, Haouaoui M 2006 Int. J. Fatigue 28 243

    [18]

    Keller R R, Phelps J M, Read D T 1996 Mater. Sci. Eng. A 214 42

    [19]

    Read D T 1998 Int. J. Fatigue 20 203

    [20]

    Merchant H D, Minor M G, Liu Y L 1999 J. Electron. Mater. 28 998

    [21]

    Merchant H D, Khatibi G, Weiss B 2004 J. Mater. Sci. 39 4157

    [22]

    Chang W J, Fang T H 2003 J. Phys. Chem. Solids 64 1279

    [23]

    Zhu T, Li J, Samanta A, Leach A, Gall K 2008 Phys. Rev. Lett. 100 025502

    [24]

    Guo Q N, Yue X D, Yang S E, Huo Y P 2010 Comput. Mater. Sci. 50 319

    [25]

    Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M 2003 Science 300 1275

    [26]

    Gruber P A, Solenthaler C, Arzt E, Spolenak R 2008 Acta Mater. 56 1876

    [27]

    Yang D Z 1991 Dislocations and Metal Strengthening Mechanisms (Harbin: Harbin Institute of Technology Press) (in Chinese) [杨德庄 1991 位错与金属强化机制 (哈尔滨: 哈尔滨工业大学出版社)]

    [28]

    Ju C C, Chen D L, Chen T C 2001 Proceedings of The 18th CSME National Conference on Mechanical Engineering Taipei, Taiwan, December 7-8, 2001 p159

    [29]

    Lin Z C, Huang J C 2004 Nanotechnology 15 1509

    [30]

    Lin Z C, Huang J C 2004 Nanotechnology 15 510

    [31]

    Komanduri R, Chandrasekaran N, Raff L M 2001 Int. J. Mech. Sci. 43 2237

    [32]

    Chen D L, Ju C C, Chen T C 2001 Proceedings of The 18th CSME National Conference on Mechanical Engineering Taipei, Taiwan, December 7-8, 2001 p1063

    [33]

    Chang W J, Fang T H 2003 J. Phys. Chem. Solids 64 1279

    [34]

    Ma X L, Yang W 2003 Nanotechnology 14 1208

    [35]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Oxford University Press)

    [36]

    Melchionna S, Ciccotti G, Holian B L 1993 Mol. Phys. 78 533

    [37]

    Schiotz J 2001 Phil. Mag. Lett. 81 301

    [38]

    Kolluri K, Gungor M R, Maroudas D 2007 Appl. Phys. Lett. 90 221907

    [39]

    Zhou S J, Preston D L, Lomdahl P S, Beazley D M 1998 Science 279 1525

    [40]

    Zhou S J, Preston D L, Louchet F 1999 Acta Mater. 47 2695

    [41]

    Li M, Chu W Y, Gao K W, Qiao L J 2003 J. Phys.: Condens. Matter 15 3391

    [42]

    Vegge T, Jacobsen W 2002 J. Phys.: Condens. Matter 14 2929

    [43]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [44]

    Schwaiger R, Kraft O 1999 Scripta Mater. 41 823

    [45]

    Zhang G P, Volkert C A, Schwaiger R, Wellner P, Arzt E, Kraft O 2006 Acta Mater. 54 3127

    [46]

    Polak J 1987 Mater. Sci. Eng. A 92 71

    [47]

    Essmann U, Gosele U, Mughrabi H 1981 Phil. Mag. A 44 405

    [48]

    Essmann U, Mughrabi H 1979 Phil. Mag. A 40 731

    [49]

    Simmons R O, Balluffi R W 1960 Phys. Rev. 117 52

    [50]

    Kwon L E, Fine M E, Weertman J 1989 Acta Metall. 37 2937

  • [1] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [2] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [3] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [4] 伍登学, 贺红亮, 邓小良, 祝文军, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 卢果, 张广财, 许爱国, 方步青, 李英骏. 铜晶体中类层错四面体的结构及其演化. 物理学报, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [7] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉. 物理学报, 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
    [8] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究. 物理学报, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [9] 杜晓莉, 张修丽, 刘宏波, 季鑫. 聚(偏氟乙烯-三氟乙烯)纳米薄膜极化反转与疲劳特性. 物理学报, 2015, 64(16): 167701. doi: 10.7498/aps.64.167701
    [10] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [11] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [12] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [13] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [14] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [15] Bogaerts A., 吕晓丹, 赵成利, 贺平逆, 宁建平, 秦尤敏, 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [16] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [17] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [18] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [19] 马颖, 孙玲玲, 周益春. BaTiO3铁电体中辐射位移效应的分子动力学模拟. 物理学报, 2011, 60(4): 046105. doi: 10.7498/aps.60.046105
    [20] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应. 物理学报, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
  • 引用本文:
    Citation:
计量
  • 文章访问数:  998
  • PDF下载量:  666
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-11
  • 修回日期:  2012-09-21
  • 刊出日期:  2013-05-20

温度对超薄铜膜疲劳性能影响的分子动力学模拟

  • 1. 郑州大学物理工程学院, 郑州 450001
    基金项目: 

    河南省教育厅科学技术研究重点项目(批准号: 13A140674, 12A140012) 和教育部科研基金(批准号: 20114101110001)资助的课题.

摘要: 用嵌入原子势的分子动力学方法模拟了温度对超薄铜膜疲劳性能的影响. 通过模拟, 首先给出了超薄铜膜的总能及应力随循环周次的变化曲线; 根据叠加经验式得出的叠加量随循环周次变化曲线, 判断出各种恒定温度下超薄铜膜的疲劳寿命. 由 200–400 K温度范围内超薄铜膜的疲劳寿命-温度变化曲线, 可以发现存在两个温度区域: 在约370 K以下, 超薄铜膜的疲劳寿命随温度升高缓慢增加, 而在约370 K以上增加较快. 建立了模型并用位错演化机制解释了超薄铜膜疲劳寿命的温度依赖关系.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回