搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响

马俊 杨万民 王妙 陈森林 冯忠岭

引用本文:
Citation:

辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响

马俊, 杨万民, 王妙, 陈森林, 冯忠岭

The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor

Ma Jun, Yang Wan-Min, Wang Miao, Chen Sen-Lin, Feng Zhong-Ling
PDF
导出引用
  • 通过对方形永磁体和方形辅助永磁体在液氮温度下对GdBCO超导体磁化后超导磁悬浮力的测量, 研究了两种组态中方形辅助永磁体对超导体的磁化方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 结果发现, 方形辅助永磁体的下表面和超导体上表面保持在同一个水平面上, 磁化进程中方形辅助永磁体在GdBCO超导体上表面水平面内沿直径方向的位置x从–15 mm增加到+15 mm时, 超导磁悬浮力大小与超导体的磁化方式有着密切关系(以Z=0.1 mm为例): 1) 当方形辅助永磁体N极垂直向上且场冷后去掉辅助永磁体时, 超导体最大磁悬浮力先从16.7 N增大到23.1 N, 再减小到16.6 N; 2) 当方形辅助永磁体N极垂直向下且场冷后去掉辅助永磁体时, 超导体最大磁悬浮力先从17.7 N减小到7 N, 再增加到17.6 N; 3) 两种组态中最大磁悬浮力不相等, 而且与零场冷下的最大磁悬浮力(17.1 N)也不同. 这些结果说明: 只有通过科学合理地设计超导体和永磁体的组合方式, 才能获得较高的磁场强度, 有效地提高超导体的磁悬浮力特性, 该结果对促进超导体的应用具有重要的指导意义.
    It has been investigated that the interaction force between a cubic permanent magnet PM1 and a GdBCO bulk (HTSC) superconducting permanent magnet (SCPM) magnetized by a cubic permanent magnet PM2 under different configurations at 77 K. Two configurations were used for the magnetization of the GdBCO bulk, one is that the North pole of the PM2 is in upward direction, the other is in downward direction, so that the North pole of the SCPM is in two states SCPM↑ and SCPM↓; the vertical distance between the bottom surface of PM1 and the top surface of SCPM is kept as a constant value, but the PM2 can be fixed at any positions (x) along a diameter of the GdBCO bulk during the magnetization process. It is found that: for the PM1↓-SCPM↑ configuration, the maximum levitation force is increasing from 16.7 N to 23.1 N when x increases from –15 mm to 0, and then decreases to 16.6 N when x further increases to 15 mm; but for the PM1↓-SCPM↓ configuration, the maximum levitation force is decreasing from 17.7 N to 7 N when x increases from –15 mm to 0, and then increases to 17.6 N when x further increases to 15 mm. These results are not only much different in the two configurations, but also much different from the maximum levitation force 17.1 N of the sample under zero field cooled condition, which is closely related with the trapped field distribution of the SCPM at different x values. These results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on scientific and reasonable designing of the system configurations, which is very important during the practical design and applications of superconducting magnetic levitation systems.
    • 基金项目: 国家自然科学基金(批准号: 51167016, 50872079)、教育部科学技术研究重大项目(批准号: 311033)和中央高校基本科研业务费专项资金(批准号: GK201101001, GK201305014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51167016, 50872079), the Key Grant Project of Chinese Ministry of Education (Grant No. 311033), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001, GK201305014).
    [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19

    [3]

    Koshizuka N 2006 Physica C 1103 445

    [4]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE. Trans. Appl. Supercond. 9 996

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378–381 809

    [7]

    Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineer. 33 217

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589

    [9]

    Koblischka A V, Mcklich F, Koblischka M R 2002 Cryst. Engineer. 5 411

    [10]

    Chan W C 2003 Physica C: Superconductivity 390 27

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温物理学报 24 213]

    [12]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 物理学报 55 839]

    [13]

    Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207

    [14]

    Cheng T L, Shih C L 2006 J. Magnet. Magnet. Mater. 304 454

    [15]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 38 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 物理学报 38 830]

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 物理学报 50 1590]

    [18]

    Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007

    [19]

    Wang M, Yang W M, Ma J, Tang Y N 2012 Sci. Sin. Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮 2012 中国科学: 物理学, 力学, 天文学 42 346]

    [20]

    Wang M, Yang W M, Zhang X J, Tang Y N 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮 2012 物理学报 61 196102]

    [21]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 物理学报 60 027401]

    [22]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 物理学报 60 077401]

    [23]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 物理学报 61 137401]

    [24]

    Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141

    [25]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1

    [26]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [27]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [28]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [29]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温物理学报 32 150]

    [30]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445–448 347

  • [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Werfel F N, Floegel-Delor U, Rothfeld R 2005 Supercond. Sci. Technol. 18 S19

    [3]

    Koshizuka N 2006 Physica C 1103 445

    [4]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE. Trans. Appl. Supercond. 9 996

    [5]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [6]

    Wang J S, Wang S Y 2002 Physica C 378–381 809

    [7]

    Ewoud V W, Yamamoto A, Toshiro H 2009 Precision Engineer. 33 217

    [8]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2002 Cryogenics 42 589

    [9]

    Koblischka A V, Mcklich F, Koblischka M R 2002 Cryst. Engineer. 5 411

    [10]

    Chan W C 2003 Physica C: Superconductivity 390 27

    [11]

    Zhu M, Ren Z Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温物理学报 24 213]

    [12]

    He G L, He Y W, Zhao Z G, Liu M 2006 Acta Phys. Sin. 55 839 (in Chinese) 55 839 [何国良, 贺延文, 赵志刚, 刘楣 2006 物理学报 55 839]

    [13]

    Zhou J, Zhang X Y, Zhou Y H 2009 Physica C: Superconductivity 469 207

    [14]

    Cheng T L, Shih C L 2006 J. Magnet. Magnet. Mater. 304 454

    [15]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 38 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 物理学报 38 830]

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Wang F, Sun G Q, Kong X M 2001 Acta Phys. Sin. 50 1590 (in Chinese) [王峰, 孙国庆, 孔祥木 2001 物理学报 50 1590]

    [18]

    Yang W M, Chao X X, Ma J, Li G Z 2010 J. Supercond. Nov. Magn. 23 1007

    [19]

    Wang M, Yang W M, Ma J, Tang Y N 2012 Sci. Sin. Phys. Mech. Astron. 42 346 (in Chinese) [王妙, 杨万民, 马俊, 唐艳妮 2012 中国科学: 物理学, 力学, 天文学 42 346]

    [20]

    Wang M, Yang W M, Zhang X J, Tang Y N 2012 Acta Phys. Sin. 61 196102 (in Chinese) [王妙, 杨万民, 张晓菊, 唐艳妮 2012 物理学报 61 196102]

    [21]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 物理学报 60 027401]

    [22]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 物理学报 60 077401]

    [23]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 物理学报 61 137401]

    [24]

    Yang W M, Zhou L, Feng Y, Zhang P X 2003 Physica C: Superconductivity 398 141

    [25]

    Zhang X Y, Zhou J, Zhou Y H 2009 Supercond. Sci. Technol. 22 1

    [26]

    Deng Z, Zheng J, Song H 2007 IEEE Trans. Appl. Supercond. 17 2071

    [27]

    He Q Y, Wang J S, Wang S Y 2009 Physica C 469 91

    [28]

    Tsuda M, Kawasaki T, Yagai T 2008 J. Phys. 97 1

    [29]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温物理学报 32 150]

    [30]

    Yang W M, Chao X X, Shu Z B 2006 Physica C 445–448 347

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 苏徐昆, 冷永刚, 张雨阳, 范胜波. 单面双极性磁铁空间磁感应强度模型. 物理学报, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [3] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [4] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [5] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [6] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [7] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [8] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响. 物理学报, 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [9] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [10] 刘忠深, 特古斯, 欧志强, 范文迪, 宋志强, 哈斯朝鲁, 伟伟, 韩睿. 在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究. 物理学报, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [11] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [12] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [13] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [14] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [15] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [16] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [17] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [18] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [19] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  4684
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-07
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-11-05

/

返回文章
返回