搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

张彬 王伟丽 牛巧利 邹贤劭 董军 章勇

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇
PDF
导出引用
导出核心图
  • 采用电子束沉积方法,以钛酸锶(SrTiO3)为衬底制备铌(Nb)掺杂TiO2薄膜并研究后续H2气氛退火处理对其薄膜样品光电性能的影响. 结果发现H2气氛热退火处理能有效改善Nb掺杂TiO2薄膜的导电率,最佳电阻率达到5.46×10-3 Ω·cm,在可见光范围内的透光率为60%–80%. 导电性能的改善与H2气氛退火处理后多晶薄膜的晶粒尺寸变大和大量的氧空位形成及H原子掺杂有关.
    • 基金项目: 广东省科技攻关项目(批准号:2012B010200032)、国家自然科学基金(批准号:U1174001)、广东省自然科学基金(批准号:S2011010003400)、广东省省部产学研项目(批准号:2011A091000033)和广州市珠江科技新星项目(批准号:2012J2200023)资助的课题.
    [1]

    Ginley D S, Bright C 2000 Mater. Res. Bull. 25 15

    [2]

    Hamberg I, Granqvist C G 1986 J. Appl. Phys. 60 R123

    [3]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [4]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [5]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [6]

    Taylor S R, McLennan S H 1986 The Continental Crust: Its Composition and Evolution (Oxford: Blackwell) p312

    [7]

    Hoang N L H, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T, Hasegawa T 2008 Appl. Phys. Express 1 115001

    [8]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin Solid Films 516 5758

    [9]

    Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang N L H, Nakao S, Yamada N, Hasegawa T 2010 J. Appl. Phys. 107 053110

    [10]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 206803 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 206803]

    [11]

    Zhang R S, Liu Y, Teng F, Song C L, Han G R 2012 Acta Phys. Sin. 61 017101 (in Chinese) [章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣 2012 物理学报 61 017101]

    [12]

    Xue J, Pan F M, Pei Y 2013 Acta Phys. Sin. 62 158103 (in Chinese) [薛将, 潘风明, 裴煜 2013 物理学报 62 158103]

    [13]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [14]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [15]

    Park J H, Kang S J, Na S, Lee H H, Kim S W, Hosono H, Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 2178

    [16]

    Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D, Ginley D S 2007 J. Appl. Phys. 101 033125

    [17]

    Seo S J, Jeon J H, Hwang Y H, Bae B S 2011 Appl. Phys. Lett. 99 152102

    [18]

    Cao L, Zhu L P, Ye Z Z 2013 J. Phys. Chem. Solids 74 668

    [19]

    Park J H, Choi Y Y, Kim H K, Lee H H, Na S I 2010 J. Appl. Phys. 108 083509

    [20]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [21]

    Panayotov D A, Yates Jr J T 2007 Chem. Phys. Lett. 436 204

    [22]

    Valentin C D, Pacchioni G 2009 J. Phys. Chem. C 113 20543

  • [1]

    Ginley D S, Bright C 2000 Mater. Res. Bull. 25 15

    [2]

    Hamberg I, Granqvist C G 1986 J. Appl. Phys. 60 R123

    [3]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [4]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [5]

    Chen D M, Xu G, Miao L, Chen L H, Nakao S, Jin P 2010 J. Appl. Phys. 107 063707

    [6]

    Taylor S R, McLennan S H 1986 The Continental Crust: Its Composition and Evolution (Oxford: Blackwell) p312

    [7]

    Hoang N L H, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T, Hasegawa T 2008 Appl. Phys. Express 1 115001

    [8]

    Sato Y, Akizuki H, Kamiyama T, Shigesato Y 2008 Thin Solid Films 516 5758

    [9]

    Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang N L H, Nakao S, Yamada N, Hasegawa T 2010 J. Appl. Phys. 107 053110

    [10]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 206803 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 206803]

    [11]

    Zhang R S, Liu Y, Teng F, Song C L, Han G R 2012 Acta Phys. Sin. 61 017101 (in Chinese) [章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣 2012 物理学报 61 017101]

    [12]

    Xue J, Pan F M, Pei Y 2013 Acta Phys. Sin. 62 158103 (in Chinese) [薛将, 潘风明, 裴煜 2013 物理学报 62 158103]

    [13]

    Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103

    [14]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [15]

    Park J H, Kang S J, Na S, Lee H H, Kim S W, Hosono H, Kim H K 2011 Sol. Energy Mater. Sol. Cells 95 2178

    [16]

    Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D, Ginley D S 2007 J. Appl. Phys. 101 033125

    [17]

    Seo S J, Jeon J H, Hwang Y H, Bae B S 2011 Appl. Phys. Lett. 99 152102

    [18]

    Cao L, Zhu L P, Ye Z Z 2013 J. Phys. Chem. Solids 74 668

    [19]

    Park J H, Choi Y Y, Kim H K, Lee H H, Na S I 2010 J. Appl. Phys. 108 083509

    [20]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [21]

    Panayotov D A, Yates Jr J T 2007 Chem. Phys. Lett. 436 204

    [22]

    Valentin C D, Pacchioni G 2009 J. Phys. Chem. C 113 20543

  • [1] 王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召. Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析. 物理学报, 2018, 67(8): 080503. doi: 10.7498/aps.67.20172718
    [2] 邵建达, 沈 健, 易 葵, 范正修, 尚淑珍. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [3] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [4] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [5] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [6] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [7] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [8] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [9] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [10] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [11] 杨富华, 王永谦, 陈长勇, 陈维德, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [12] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [13] 翟同广, 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [14] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [15] 刘保剑, 段微波, 李大琪, 余德明, 陈刚, 王天洪, 刘定权. 退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响. 物理学报, 2019, 68(11): 114208. doi: 10.7498/aps.68.20182247
    [16] 姜柯, 陆妩, 胡天乐, 王信, 郭旗, 何承发, 刘默涵, 李小龙. 电子辐射环境中NPN输入双极运算放大器的辐射效应和退火特性. 物理学报, 2015, 64(13): 136103. doi: 10.7498/aps.64.136103
    [17] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [18] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [19] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究. 物理学报, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [20] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
  • 引用本文:
    Citation:
计量
  • 文章访问数:  529
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2013-11-23
  • 刊出日期:  2014-03-20

H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响

  • 1. 华南师范大学, 光电子材料与技术研究所, 广州 510631
    基金项目: 

    广东省科技攻关项目(批准号:2012B010200032)、国家自然科学基金(批准号:U1174001)、广东省自然科学基金(批准号:S2011010003400)、广东省省部产学研项目(批准号:2011A091000033)和广州市珠江科技新星项目(批准号:2012J2200023)资助的课题.

摘要: 采用电子束沉积方法,以钛酸锶(SrTiO3)为衬底制备铌(Nb)掺杂TiO2薄膜并研究后续H2气氛退火处理对其薄膜样品光电性能的影响. 结果发现H2气氛热退火处理能有效改善Nb掺杂TiO2薄膜的导电率,最佳电阻率达到5.46×10-3 Ω·cm,在可见光范围内的透光率为60%–80%. 导电性能的改善与H2气氛退火处理后多晶薄膜的晶粒尺寸变大和大量的氧空位形成及H原子掺杂有关.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回