搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴压力下Ge2X2Te5(X=Sb, Bi)薄膜拓扑相变的第一性原理研究

张梅 文黎巍 丁俊 张英

引用本文:
Citation:

单轴压力下Ge2X2Te5(X=Sb, Bi)薄膜拓扑相变的第一性原理研究

张梅, 文黎巍, 丁俊, 张英

First-principles study on the uniaxial pressure induced topological quantum phase transitions of Ge2X2Te5 (X =Sb, Bi) thin films

Zhang Mei, Wen Li-Wei, Ding Jun, Zhang Ying
PDF
导出引用
  • 随着拓扑绝缘体的发现, 材料拓扑物性的研究成为凝聚态物理研究的热点领域. 本文基于第一性原理计算, 研究了化合物Ge2X2Te5 (X=Sb, Bi) 的块体结构和二维单层和双层薄膜结构的拓扑物性, 以及单双层薄膜在垂直方向单轴压力下的拓扑量子相变. 研究发现, A型原子序列排列的这两种化合物都是拓扑绝缘体, 其单层薄膜都是普通金属, 而双层薄膜都是拓扑金属, 单层和双层薄膜在单轴加压过程中都没有发生拓扑量子相变; 这两种化合物的B型原子序列的晶体是普通绝缘体, 其所对应的薄膜, Ge2Sb2Te5单层是普通金属, 双层薄膜和Ge2Bi2Te5的单层和双层薄膜均为普通绝缘体, 但是在单轴加压过程中B 型原子序列所对应的单层和双层薄膜都转变为拓扑金属.
    Since the topological insulator was discovered, the investigation of topological properties has become the hot spot in condensed matter physics. In this paper, we study topological properties of chalcogenide compounds Ge2X2Te5 (X=Sb, Bi) crystals and their monolayer and bilayer films as well as the vertical uniaxial pressure induced topological quantum phase transitions in monolayer and bilayer films. The results show that for A-type crystal, the bulk structures of these two compounds are topological insulators, the monolayer structures of these two compounds are conventional metals, and bilayer structures are topological metals. There is no topological quantum phase transition in monolayer nor bilayer film under the uniaxial compression. While for B-type crystal, the bulk structures of these two compounds are conventional insulators, the monolayer Ge2Sb2Te5 is conventional metal, its bilayer structure as well as monolayer and bilayer of Ge2Bi2Te5 films is conventional insulator. All the B-type monolayer and bilayer films each undergo a topological quantum phase transition to the topological metals under the uniaxial compression.
    • 基金项目: 国家自然科学基金(批准号: 11135001)、国家自然科学基金专项基金(批准号: 11347187) 和河南省科技攻关计划(批准号: 132102210141)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11135001), the Special Funds of the National Natural Science Foundation of China (Grant No. 11347187), and the Key Science and Technology Program of Henan Province, China (Grant No. 132102210141).
    [1]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [2]

    Feng W X, Xiao D, Ding J, Yao Y G 2011 Phys. Rev. Lett. 106 016402

    [3]

    Weng H M, Xu G, Zhang H J, Zhang S C, Dai X, Fang Z 2011 Phys. Rev. B 84 060408

    [4]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806

    [5]

    Marcinkova A, Wang J K, Slavonic C, Andriy H N, Kelly K F, Filinchuk Y, Morosan E 2013 Phys. Rev. B 88 165128

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [7]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [8]

    Kim J, Kim J, Jhi S H 2010 Phys. Rev. B 82 201312(R)

    [9]

    Sa B S, Zhou J, Song Z, Sun Z, Ahuja R 2011 Phys. Rev. B 84 085130

    [10]

    Sun Z, Zhou J, Pana Y, Songc Z, Maod H K, Ahuja R 2011 Proc. Natl. Acad. Sci. U.S.A. 108 10410

    [11]

    Lai Y F, Feng J, Qiao B W, Ling Y, Lin Y Y, Tang T A, Cai B C, Chen B M 2006 Acta Phys. Sin. 55 4347 (in Chinese) [赖云峰, 冯洁, 乔保卫, 凌云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明 2006 物理学报 55 4347]

    [12]

    Liao Y B, Xu L, Yang F, Liu W Q, Liu D, Xu J, Ma Z Y, Chen K J 2010 Acta Phys. Sin. 59 6563 (in Chinese) [廖远宝, 徐岭, 杨菲, 刘文强, 刘东, 徐骏, 马忠元, 陈坤基 2010 物理学报 59 6563]

    [13]

    Pirovano A 2004 IEEE Trans. Electron Dev. 51 3

    [14]

    Juarez L F, Da S, Aron W, Lee H 2008 Phys. Rev. B 78 224111

    [15]

    Kaewmaraya T, Ramzan M, Löfås H, Ahuja R 2013 J. Appl. Phys. 113 033510

    [16]

    Sa B S, Zhou J, Sun Z M, Tominaga J, Ahuja R 2012 Phys. Rev. Lett. 109 096802

    [17]

    Park J H, Eom S H, Lee H 2009 Phys. Rev. B 80 115209

    [18]

    Kim K H, Kyoung Y K, Yun D J, Choi S J 2013 Thin Solid Films 548 40

    [19]

    Sa B S, Zhou J, Ahuja R, Sun Z 2014 Computat. Mater. Sci. 82 66

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [21]

    Kresse G, Furthmuller J 1996 J. Comput. Mater. Sci. 6 15

    [22]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [23]

    Petrov I I, Immov R M, Pinker Z G 1968 Sov. Phys. Crystallogr. 13 339

    [24]

    Kooi B J, de Hossona J Th M 2002 J. Appl. Phys. 92 3584

    [25]

    Sun Z M, Zhou J, Ahuja R 2006 Phys. Rev. Lett. 96 055507

    [26]

    Lee G, Jhi S H 2008 Phys. Rev. B 77 153201

    [27]

    Kooi B J, de Hossona J Th M 2002 J. Appl. Phys. 92 3584

    [28]

    Matsunaga T, Kojima R, Yamada N, Kifune K, Kubota Y, Takata M 2007 Acta Cryst. B63 346

    [29]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2011 Physics 40 7 (in Chinese) [余睿, 张薇, 翁红明, 戴希, 方忠 2011 物理 40 7]

    [30]

    Li W, Wei X Y, Zhu J X, Ting C S, Chen Y 2014 Phys. Rev. B 89 035101

    [31]

    Zhu Z Y, Cheng Y, Schwingenschlögl U 2012 Phys. Rev. Lett. 108 266805

    [32]

    Zhang Q Y, Cheng Y, Schwingenschlögl U 2013 Phys. Rev. B 88 155317

    [33]

    Singh B, Lin H, Prasad R, Bansil A 2013 Phys. Rev. B 88 195147

  • [1]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [2]

    Feng W X, Xiao D, Ding J, Yao Y G 2011 Phys. Rev. Lett. 106 016402

    [3]

    Weng H M, Xu G, Zhang H J, Zhang S C, Dai X, Fang Z 2011 Phys. Rev. B 84 060408

    [4]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806

    [5]

    Marcinkova A, Wang J K, Slavonic C, Andriy H N, Kelly K F, Filinchuk Y, Morosan E 2013 Phys. Rev. B 88 165128

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [7]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [8]

    Kim J, Kim J, Jhi S H 2010 Phys. Rev. B 82 201312(R)

    [9]

    Sa B S, Zhou J, Song Z, Sun Z, Ahuja R 2011 Phys. Rev. B 84 085130

    [10]

    Sun Z, Zhou J, Pana Y, Songc Z, Maod H K, Ahuja R 2011 Proc. Natl. Acad. Sci. U.S.A. 108 10410

    [11]

    Lai Y F, Feng J, Qiao B W, Ling Y, Lin Y Y, Tang T A, Cai B C, Chen B M 2006 Acta Phys. Sin. 55 4347 (in Chinese) [赖云峰, 冯洁, 乔保卫, 凌云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明 2006 物理学报 55 4347]

    [12]

    Liao Y B, Xu L, Yang F, Liu W Q, Liu D, Xu J, Ma Z Y, Chen K J 2010 Acta Phys. Sin. 59 6563 (in Chinese) [廖远宝, 徐岭, 杨菲, 刘文强, 刘东, 徐骏, 马忠元, 陈坤基 2010 物理学报 59 6563]

    [13]

    Pirovano A 2004 IEEE Trans. Electron Dev. 51 3

    [14]

    Juarez L F, Da S, Aron W, Lee H 2008 Phys. Rev. B 78 224111

    [15]

    Kaewmaraya T, Ramzan M, Löfås H, Ahuja R 2013 J. Appl. Phys. 113 033510

    [16]

    Sa B S, Zhou J, Sun Z M, Tominaga J, Ahuja R 2012 Phys. Rev. Lett. 109 096802

    [17]

    Park J H, Eom S H, Lee H 2009 Phys. Rev. B 80 115209

    [18]

    Kim K H, Kyoung Y K, Yun D J, Choi S J 2013 Thin Solid Films 548 40

    [19]

    Sa B S, Zhou J, Ahuja R, Sun Z 2014 Computat. Mater. Sci. 82 66

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [21]

    Kresse G, Furthmuller J 1996 J. Comput. Mater. Sci. 6 15

    [22]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [23]

    Petrov I I, Immov R M, Pinker Z G 1968 Sov. Phys. Crystallogr. 13 339

    [24]

    Kooi B J, de Hossona J Th M 2002 J. Appl. Phys. 92 3584

    [25]

    Sun Z M, Zhou J, Ahuja R 2006 Phys. Rev. Lett. 96 055507

    [26]

    Lee G, Jhi S H 2008 Phys. Rev. B 77 153201

    [27]

    Kooi B J, de Hossona J Th M 2002 J. Appl. Phys. 92 3584

    [28]

    Matsunaga T, Kojima R, Yamada N, Kifune K, Kubota Y, Takata M 2007 Acta Cryst. B63 346

    [29]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2011 Physics 40 7 (in Chinese) [余睿, 张薇, 翁红明, 戴希, 方忠 2011 物理 40 7]

    [30]

    Li W, Wei X Y, Zhu J X, Ting C S, Chen Y 2014 Phys. Rev. B 89 035101

    [31]

    Zhu Z Y, Cheng Y, Schwingenschlögl U 2012 Phys. Rev. Lett. 108 266805

    [32]

    Zhang Q Y, Cheng Y, Schwingenschlögl U 2013 Phys. Rev. B 88 155317

    [33]

    Singh B, Lin H, Prasad R, Bansil A 2013 Phys. Rev. B 88 195147

计量
  • 文章访问数:  2001
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-05-05

单轴压力下Ge2X2Te5(X=Sb, Bi)薄膜拓扑相变的第一性原理研究

  • 1. 北京师范大学物理系, 北京 100875;
  • 2. 河南工程学院理学院, 郑州 451191
    基金项目: 

    国家自然科学基金(批准号: 11135001)、国家自然科学基金专项基金(批准号: 11347187) 和河南省科技攻关计划(批准号: 132102210141)资助的课题.

摘要: 随着拓扑绝缘体的发现, 材料拓扑物性的研究成为凝聚态物理研究的热点领域. 本文基于第一性原理计算, 研究了化合物Ge2X2Te5 (X=Sb, Bi) 的块体结构和二维单层和双层薄膜结构的拓扑物性, 以及单双层薄膜在垂直方向单轴压力下的拓扑量子相变. 研究发现, A型原子序列排列的这两种化合物都是拓扑绝缘体, 其单层薄膜都是普通金属, 而双层薄膜都是拓扑金属, 单层和双层薄膜在单轴加压过程中都没有发生拓扑量子相变; 这两种化合物的B型原子序列的晶体是普通绝缘体, 其所对应的薄膜, Ge2Sb2Te5单层是普通金属, 双层薄膜和Ge2Bi2Te5的单层和双层薄膜均为普通绝缘体, 但是在单轴加压过程中B 型原子序列所对应的单层和双层薄膜都转变为拓扑金属.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回