搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

姜丽娜 张玉滨 董顺乐

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

姜丽娜, 张玉滨, 董顺乐
PDF
导出引用
导出核心图
  • 根据实验发现的有机器件如Co/有机半导体/La0.7Sr0.3MnO3中磁性原子渗透现象, 利用自旋漂移-扩散方程, 理论研究了磁性渗透层中极化子-双极化子的转化对自旋极化输运的影响. 研究发现: 磁性渗透层具有不同于纯净有机层的迁移率和自旋反转时间, 都将影响极化子-双极化子的转化, 进而影响自旋极化的输运; 在磁性渗透层中极化子自旋反转时间的劈裂是引起自旋弛豫的主要因素, 而极化子和双极化子之间的转化是重要因素.
    • 基金项目: 国家自然科学基金(批准号: 11475160)和山东省自然科学基金(批准号: ZR2014AM023)资助的课题.
    [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [4]

    Dou Z T, Ren J F, Wang Y M, Yuan X B, Hu G C 2012 Acta Phys. Sin. 61 088503 (in Chinese) [窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超 2012 物理学报 61 088503]

    [5]

    Koopmans B 2014 Nature Phys. 10 249

    [6]

    Li W F, Liang Y X, Jin Y, Wei J H 2010 Acta Phys. Sin. 59 8850 (in Chinese) [李维峰, 梁迎新, 金勇, 魏建华 2010 物理学报 59 8850]

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [8]

    Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T 2013 Nature Commun. 4 1392

    [9]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781

    [10]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [11]

    Fu J Y, Ren J F, Liu X J, Liu D S, Xie S J

    [12]

    Scott J C, Pfluger P, Krounbi M T, Street G B 1983 Phys. Rev. B 28 2140

    [13]

    Genoud F, Guglielmi M, Nechtschein M, Genies E, Salmon M 1985 Phys. Rev. Lett. 55 118

    [14]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [15]

    Ozbay A, Nowak E R, Yu Z G, Chu W, Shi Y, Krishnamurthy S, Tang Z, Newman N 2009 Appl. Phys. Lett. 95 232507

    [16]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408R

    [17]

    Gao K, Xie S J, Li Y, Yin S, Liu D S, Zhao X 2009 Chin. Phys. B 18 2961

    [18]

    Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [19]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [20]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Phys.: Condens. Matter 17 2341

    [21]

    Ren J F, Zhang Y B, Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese) [任俊峰, 张玉滨, 解士杰 2007 物理学报 56 4785]

    [22]

    Harmon N J, Flatté M E 2012 Phys. Rev. Lett. 108 186602

    [23]

    Lee S T, Gao Z Q, Hung L S 1999 Appl. Phys. Lett. 75 1404

    [24]

    Zhao J Q, Xie S J, Han S H, Yang Z W, Ye L N, Yang T L 2000 Synth. Met. 114 251

    [25]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [26]

    Wang F J, Yang C G, Vardeny Z V, Li X G 2007 Phys. Rev. B 75 245324

    [27]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nature Nanotech. 2 216

    [28]

    Zhang Y B, Ren J F, Lei J, Xie S J 2009 Org. Electron. 10 568

    [29]

    Zhang Y B, Ren J F, Hu G C, Xie S J 2008 Org. Electron. 9 687

    [30]

    Pershin Y V, Privman V 2003 Phys. Rev. Lett. 90 256602

    [31]

    Yu Z G, Flatté M E 2002 Phys. Rev. B 66 235302

    [32]

    Prince M B 1953 Phys. Rev. 92 681

    [33]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nature Mater. 8 115

  • [1]

    Baibich M N, Broto J M, Fert A, Nguyen F D V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [3]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [4]

    Dou Z T, Ren J F, Wang Y M, Yuan X B, Hu G C 2012 Acta Phys. Sin. 61 088503 (in Chinese) [窦兆涛, 任俊峰, 王玉梅, 原晓波, 胡贵超 2012 物理学报 61 088503]

    [5]

    Koopmans B 2014 Nature Phys. 10 249

    [6]

    Li W F, Liang Y X, Jin Y, Wei J H 2010 Acta Phys. Sin. 59 8850 (in Chinese) [李维峰, 梁迎新, 金勇, 魏建华 2010 物理学报 59 8850]

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336

    [8]

    Zhang X, Mizukami S, Kubota T, Ma Q, Oogane M, Naganuma H, Ando Y, Miyazaki T 2013 Nature Commun. 4 1392

    [9]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781

    [10]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [11]

    Fu J Y, Ren J F, Liu X J, Liu D S, Xie S J

    [12]

    Scott J C, Pfluger P, Krounbi M T, Street G B 1983 Phys. Rev. B 28 2140

    [13]

    Genoud F, Guglielmi M, Nechtschein M, Genies E, Salmon M 1985 Phys. Rev. Lett. 55 118

    [14]

    Dediu V, Murgia M, Matacotta F C, Taliani C, Barbanera S 2002 Solid State Commun. 122 181

    [15]

    Ozbay A, Nowak E R, Yu Z G, Chu W, Shi Y, Krishnamurthy S, Tang Z, Newman N 2009 Appl. Phys. Lett. 95 232507

    [16]

    Yu Z G, Berding M A, Krishnamurthy S 2005 Phys. Rev. B 71 060408R

    [17]

    Gao K, Xie S J, Li Y, Yin S, Liu D S, Zhao X 2009 Chin. Phys. B 18 2961

    [18]

    Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [19]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [20]

    Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Phys.: Condens. Matter 17 2341

    [21]

    Ren J F, Zhang Y B, Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese) [任俊峰, 张玉滨, 解士杰 2007 物理学报 56 4785]

    [22]

    Harmon N J, Flatté M E 2012 Phys. Rev. Lett. 108 186602

    [23]

    Lee S T, Gao Z Q, Hung L S 1999 Appl. Phys. Lett. 75 1404

    [24]

    Zhao J Q, Xie S J, Han S H, Yang Z W, Ye L N, Yang T L 2000 Synth. Met. 114 251

    [25]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [26]

    Wang F J, Yang C G, Vardeny Z V, Li X G 2007 Phys. Rev. B 75 245324

    [27]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nature Nanotech. 2 216

    [28]

    Zhang Y B, Ren J F, Lei J, Xie S J 2009 Org. Electron. 10 568

    [29]

    Zhang Y B, Ren J F, Hu G C, Xie S J 2008 Org. Electron. 9 687

    [30]

    Pershin Y V, Privman V 2003 Phys. Rev. Lett. 90 256602

    [31]

    Yu Z G, Flatté M E 2002 Phys. Rev. B 66 235302

    [32]

    Prince M B 1953 Phys. Rev. 92 681

    [33]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nature Mater. 8 115

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1258
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-29
  • 修回日期:  2015-03-04
  • 刊出日期:  2015-07-05

有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响

  • 1. 中国海洋大学信息科学与工程学院, 青岛 266100
    基金项目: 

    国家自然科学基金(批准号: 11475160)和山东省自然科学基金(批准号: ZR2014AM023)资助的课题.

摘要: 根据实验发现的有机器件如Co/有机半导体/La0.7Sr0.3MnO3中磁性原子渗透现象, 利用自旋漂移-扩散方程, 理论研究了磁性渗透层中极化子-双极化子的转化对自旋极化输运的影响. 研究发现: 磁性渗透层具有不同于纯净有机层的迁移率和自旋反转时间, 都将影响极化子-双极化子的转化, 进而影响自旋极化的输运; 在磁性渗透层中极化子自旋反转时间的劈裂是引起自旋弛豫的主要因素, 而极化子和双极化子之间的转化是重要因素.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回