搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交叉极化旋转相位梯度超表面的宽带异常反射

范亚 屈绍波 王甲富 张介秋 冯明德 张安学

基于交叉极化旋转相位梯度超表面的宽带异常反射

范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学
PDF
导出引用
导出核心图
  • 设计实现了一种基于双圆弧形金属结构的宽带反射型极化旋转超表面, 在7.9–20.1 GHz的宽频带范围内交叉极化转换率达到99%, 通过改变其结构参数可实现在保持高效的交叉极化转换率的条件下对交叉极化反射相位的自由调控. 基于六种不同结构参数极化旋转超表面结构单元的空间排布设计实现了一维宽带相位梯度超表面, 在宽频带内, 实现了异常反射. 测试了其镜面交叉极化反射率, 与仿真结果基本一致. 仿真计算了x-极化波入射时的电磁场分布和异常反射角度, 与理论计算结果基本一致. 仿真与测试结果均表明这种相位梯度超表面在8.9–10 GHz 和10.0–18.1 GHz的两个宽带频率范围内可分别实现高效的表面波耦合和异常反射.
      通信作者: 屈绍波, qushaobo@mail.xjtu.edu.cn;wangjiafu1981@126.com ; 王甲富, qushaobo@mail.xjtu.edu.cn;wangjiafu1981@126.com
    • 基金项目: 国家自然科学基金(批准号: 61331005, 11274389, 61471388)、中国博士后科学基金(批准号: 2013M532131, 2013M53221)和陕西省基础研究计划(批准号: 2011JQ8031, 2013JM6005)资助的课题.
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 333 334

    [2]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [3]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [4]

    Pinchuk A O, Schatz G C 2007 J. Opt. Soc. Am. 2007 24

    [5]

    Paul O, Reinhard B, Krolla B, Beigang R, Rahm M 2010 Appl. Phys. Lett. 96 241110

    [6]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [7]

    Wang J F, Zhang J Q, Ma H, Yang Y M, Wu X, Qu S B, Xu Z, Xia S 2010 Acta Phys. Sin. 60 087802 (in Chinese) [王甲富, 张介秋, 马华,杨一鸣, 吴翔, 屈绍波, 徐卓, 夏颂 2010 物理学报 59 1851]

    [8]

    Zeng R, Xu J P, Yang Y P, Liu S T 2007 Acta Phys. Sin. 56 6446 (in Chinese) [曾然,许静平,羊亚平,刘树田 2007 物理学报 56 6446]

    [9]

    Yu N F, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [10]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Materials 11 426

    [11]

    Huang L L, Chen X Z, Bai B F 2013 Science & Applications 2 e70

    [12]

    Huang L L Chen X Z, Holger M, Li G X, Bai B F, Tan Q F, Jin G F, Thomas Z, Zhuang S 2012 Nano Letters 2012 5750

    [13]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y Y 2012 Appl. Phys. Lett. 101 201104

    [14]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2014 IEEE Antennas and Wireless Propagation Letters 23 56483

    [15]

    Quan J, Tian Y, Zhang J,Shao L X 2011 Chin. Phys. B 20 047201

    [16]

    Kats A V, Savel'ev S, Yampol'skii V A, Noril F 2008 Phys. Rev. Lett. 98 073901

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203(in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [18]

    Nathaniel K G, Jane E H, Dibakar R C, Zeng Y, Mattew T R, Abul K A, Antoinette J T, Diego A R Dalvit, Chen H T 2013 Science 123 5399

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 333 334

    [2]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [3]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [4]

    Pinchuk A O, Schatz G C 2007 J. Opt. Soc. Am. 2007 24

    [5]

    Paul O, Reinhard B, Krolla B, Beigang R, Rahm M 2010 Appl. Phys. Lett. 96 241110

    [6]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [7]

    Wang J F, Zhang J Q, Ma H, Yang Y M, Wu X, Qu S B, Xu Z, Xia S 2010 Acta Phys. Sin. 60 087802 (in Chinese) [王甲富, 张介秋, 马华,杨一鸣, 吴翔, 屈绍波, 徐卓, 夏颂 2010 物理学报 59 1851]

    [8]

    Zeng R, Xu J P, Yang Y P, Liu S T 2007 Acta Phys. Sin. 56 6446 (in Chinese) [曾然,许静平,羊亚平,刘树田 2007 物理学报 56 6446]

    [9]

    Yu N F, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [10]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Materials 11 426

    [11]

    Huang L L, Chen X Z, Bai B F 2013 Science & Applications 2 e70

    [12]

    Huang L L Chen X Z, Holger M, Li G X, Bai B F, Tan Q F, Jin G F, Thomas Z, Zhuang S 2012 Nano Letters 2012 5750

    [13]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y Y 2012 Appl. Phys. Lett. 101 201104

    [14]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2014 IEEE Antennas and Wireless Propagation Letters 23 56483

    [15]

    Quan J, Tian Y, Zhang J,Shao L X 2011 Chin. Phys. B 20 047201

    [16]

    Kats A V, Savel'ev S, Yampol'skii V A, Noril F 2008 Phys. Rev. Lett. 98 073901

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203(in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [18]

    Nathaniel K G, Jane E H, Dibakar R C, Zeng Y, Mattew T R, Abul K A, Antoinette J T, Diego A R Dalvit, Chen H T 2013 Science 123 5399

  • [1] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [2] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [3] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [4] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [5] 于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐. 一种宽带可重构反射型极化旋转表面. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [6] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [7] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [8] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [12] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [13] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [14] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [15] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [16] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, (): 004200. doi: 10.7498/aps.69.20200453
    [17] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [18] 邱天硕, 王甲富, 李勇峰, 王军, 闫明宝, 屈绍波. 基于超表面的无磁性材料环行器. 物理学报, 2016, 65(17): 174101. doi: 10.7498/aps.65.174101
    [19] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [20] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  789
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

基于交叉极化旋转相位梯度超表面的宽带异常反射

    基金项目: 

    国家自然科学基金(批准号: 61331005, 11274389, 61471388)、中国博士后科学基金(批准号: 2013M532131, 2013M53221)和陕西省基础研究计划(批准号: 2011JQ8031, 2013JM6005)资助的课题.

摘要: 设计实现了一种基于双圆弧形金属结构的宽带反射型极化旋转超表面, 在7.9–20.1 GHz的宽频带范围内交叉极化转换率达到99%, 通过改变其结构参数可实现在保持高效的交叉极化转换率的条件下对交叉极化反射相位的自由调控. 基于六种不同结构参数极化旋转超表面结构单元的空间排布设计实现了一维宽带相位梯度超表面, 在宽频带内, 实现了异常反射. 测试了其镜面交叉极化反射率, 与仿真结果基本一致. 仿真计算了x-极化波入射时的电磁场分布和异常反射角度, 与理论计算结果基本一致. 仿真与测试结果均表明这种相位梯度超表面在8.9–10 GHz 和10.0–18.1 GHz的两个宽带频率范围内可分别实现高效的表面波耦合和异常反射.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回