搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电力线谐波辐射在分层各向异性电离层中的传播特点

吴静 周志为 闫旭

电力线谐波辐射在分层各向异性电离层中的传播特点

吴静, 周志为, 闫旭
PDF
导出引用
导出核心图
  • 电力线谐波辐射特指在电离层或磁层中观测到的来源于地面电力系统输电线的电磁波辐射, 其在电磁场时频功率谱中表现为400 Hz至5 kHz范围内, 频率间隔为50/100 Hz或60/120 Hz 的平行谱线, 已成为近地空间环境的一种人为污染源. 对于该现象的形成机理尚缺乏定量研究. 本文研究了非理想导电大地上方由电偶极子源产生的电磁场在分层各向异性电离层中的传播模型, 提出了一种新的求解方法, 有效解决了编程计算中的数值溢出问题, 并利用已有解析解对所提方法进行了验证. 在此基础上, 利用实际电力线、大地、电离层的相关参数, 研究了偶极子源频率、电离层下边界高度、大地电导率、地磁场方向等对电力线谐波辐射在电离层中的传播的影响. 结果表明, 频率等于地-电离层波导导波模截止频率时透入电离层的电力线谐波辐射强度更大; 谐波电流一定时, 大地电导率小的地区, 电力线谐波辐射的功率更大; 电力线谐波辐射在电离层中沿地磁场方向传播. 本文所得结果有益于阐释电力线谐波辐射现象的形成机理.
      通信作者: 吴静, wujing06@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51207006)资助的课题.
    [1]

    Bullough K 1995 Handbook of atmospheric electrodynamics (Vol. 2) (Boca Raton: Fla CRC Press) p291

    [2]

    Simoes F, Pfaff R, Berthelier J J, Klenzing J 2012 Space. Sci. Rev. 168 551

    [3]

    Parrot M, Němec F, Santolk O, Berthelier J J 2005 Ann. Geophys. 23 3301

    [4]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [5]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [6]

    Němec F, Santolk O, Parrot M, Bortnik J 2010 J. Geophys. Res. 115 A11301

    [7]

    Němec F, Parrot M, Santolk O 2010 J. Geophys. Res. 115 A11301

    [8]

    Parrot M, Němec F, Santolk O 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672(in Chinese) [吴静, 张翀, 付静静, 马齐爽 2014 北京航空航天大学学报 40 1672]

    [9]

    Wu J, Zhang C, Fu J J, Ma Q S 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672 (in Chinese) [吴静, 张翀, 付静静, 马齐爽2014 北京航空航天大学学报40 1672]

    [10]

    Carson J R 1926 Bell Syst. Technol. J. 5 539

    [11]

    Wedepohl L M, Efthymiadis A E 1983 J. Atmos. Terr. Phys. 45 409

    [12]

    Yearby K H, Smith A J, Bullough K 1983 J. Atmos. Terr. Phys. 45 409

    [13]

    Tatnall A R L, Matthews J P, Bullouth K, Kaiser T R 2008 Chin. Phys. B 17 3629

    [14]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [15]

    Ando Y, Hayakawa M, Molchanov O A 2014 Chin. Phys. B 23 034102

    [16]

    Wu J, Fu J J, Zhang C 2014 Chin. Phys. B 23 034102

    [17]

    Budden K G 1985 The Propagation of Radio Waves:The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge: Cambridge Univ. Press) pp574-576

    [18]

    Nagano I, Mambo M, Hutatsuishi G 1975 Radio. Sci. 10 611

    [19]

    Xia M Y, Chen Z Y 1999 Sci. China Ser. E 29 163 (in Chinese) [夏明耀, 陈志雨 1999 中国科学(E辑) 29 163]

    [20]

    Lehtinen N G, Inan U S 2008 J. Geophys. Res. 113 A06301

    [21]

    Nabighian M N (translated by Zhao J X, Wang Y J) 1992 Electromagnetic Methods in Applied Geophysics (Vol. 1) (Beijing: Geological Publishing House) pp217-226 (in Chinese) [米萨克 N 纳比吉安著 (赵经祥, 王艳君译) 1992 勘查地球物理电磁法(第一卷)(北京: 地质出版社)第217226页]

    [22]

    Fu C M, Di Q Y, Wang M Y 2010 Sci. Chinese J. Geophys-Ch. 53 177(in Chinese) [付长民, 底青云, 王妙月 2010 地球物理学报 53 177]

  • [1]

    Bullough K 1995 Handbook of atmospheric electrodynamics (Vol. 2) (Boca Raton: Fla CRC Press) p291

    [2]

    Simoes F, Pfaff R, Berthelier J J, Klenzing J 2012 Space. Sci. Rev. 168 551

    [3]

    Parrot M, Němec F, Santolk O, Berthelier J J 2005 Ann. Geophys. 23 3301

    [4]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [5]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [6]

    Němec F, Santolk O, Parrot M, Bortnik J 2010 J. Geophys. Res. 115 A11301

    [7]

    Němec F, Parrot M, Santolk O 2010 J. Geophys. Res. 115 A11301

    [8]

    Parrot M, Němec F, Santolk O 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672(in Chinese) [吴静, 张翀, 付静静, 马齐爽 2014 北京航空航天大学学报 40 1672]

    [9]

    Wu J, Zhang C, Fu J J, Ma Q S 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672 (in Chinese) [吴静, 张翀, 付静静, 马齐爽2014 北京航空航天大学学报40 1672]

    [10]

    Carson J R 1926 Bell Syst. Technol. J. 5 539

    [11]

    Wedepohl L M, Efthymiadis A E 1983 J. Atmos. Terr. Phys. 45 409

    [12]

    Yearby K H, Smith A J, Bullough K 1983 J. Atmos. Terr. Phys. 45 409

    [13]

    Tatnall A R L, Matthews J P, Bullouth K, Kaiser T R 2008 Chin. Phys. B 17 3629

    [14]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [15]

    Ando Y, Hayakawa M, Molchanov O A 2014 Chin. Phys. B 23 034102

    [16]

    Wu J, Fu J J, Zhang C 2014 Chin. Phys. B 23 034102

    [17]

    Budden K G 1985 The Propagation of Radio Waves:The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge: Cambridge Univ. Press) pp574-576

    [18]

    Nagano I, Mambo M, Hutatsuishi G 1975 Radio. Sci. 10 611

    [19]

    Xia M Y, Chen Z Y 1999 Sci. China Ser. E 29 163 (in Chinese) [夏明耀, 陈志雨 1999 中国科学(E辑) 29 163]

    [20]

    Lehtinen N G, Inan U S 2008 J. Geophys. Res. 113 A06301

    [21]

    Nabighian M N (translated by Zhao J X, Wang Y J) 1992 Electromagnetic Methods in Applied Geophysics (Vol. 1) (Beijing: Geological Publishing House) pp217-226 (in Chinese) [米萨克 N 纳比吉安著 (赵经祥, 王艳君译) 1992 勘查地球物理电磁法(第一卷)(北京: 地质出版社)第217226页]

    [22]

    Fu C M, Di Q Y, Wang M Y 2010 Sci. Chinese J. Geophys-Ch. 53 177(in Chinese) [付长民, 底青云, 王妙月 2010 地球物理学报 53 177]

  • [1] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
    [3] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [4] 潘军廷, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191934
    [5] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
  • 引用本文:
    Citation:
计量
  • 文章访问数:  411
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-27
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-10-05

电力线谐波辐射在分层各向异性电离层中的传播特点

  • 1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191
  • 通信作者: 吴静, wujing06@buaa.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51207006)资助的课题.

摘要: 电力线谐波辐射特指在电离层或磁层中观测到的来源于地面电力系统输电线的电磁波辐射, 其在电磁场时频功率谱中表现为400 Hz至5 kHz范围内, 频率间隔为50/100 Hz或60/120 Hz 的平行谱线, 已成为近地空间环境的一种人为污染源. 对于该现象的形成机理尚缺乏定量研究. 本文研究了非理想导电大地上方由电偶极子源产生的电磁场在分层各向异性电离层中的传播模型, 提出了一种新的求解方法, 有效解决了编程计算中的数值溢出问题, 并利用已有解析解对所提方法进行了验证. 在此基础上, 利用实际电力线、大地、电离层的相关参数, 研究了偶极子源频率、电离层下边界高度、大地电导率、地磁场方向等对电力线谐波辐射在电离层中的传播的影响. 结果表明, 频率等于地-电离层波导导波模截止频率时透入电离层的电力线谐波辐射强度更大; 谐波电流一定时, 大地电导率小的地区, 电力线谐波辐射的功率更大; 电力线谐波辐射在电离层中沿地磁场方向传播. 本文所得结果有益于阐释电力线谐波辐射现象的形成机理.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回