搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下富氢化合物的结构与奇异超导电性

段德芳 马艳斌 邵子霁 谢慧 黄晓丽 刘冰冰 崔田

高压下富氢化合物的结构与奇异超导电性

段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田
PDF
导出引用
  • 在富氢化合物中,一方面由于非氢元素的存在会对氢的子晶格产生化学预压作用,这些体系比纯氢更容易金属化.另一方面由于含氢量较多,富氢化合物可能会具有像金属氢那样较高的超导转变温度,有望成为超导家族的新成员氢基超导体.高压下富氢化合物的结构及超导电性已成为物理、材料等多学科的研究热点,最近理论和实验发现硫氢化合物在高压下的超导转变温度达到200 K,创造了高温超导新纪录,进一步推动了人们对富氢化合物超导电性的研究.本文主要介绍了近年来高压下几种典型富氢化合物的结构、稳定性、原子间相互作用、金属化及超导电性,希望未来能在富氢化合物中寻找到具有更高超导转变温度的超导体.
      通信作者: 崔田, cuitian@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51632002,11674122,51572108,11204100,11504127,11634004)和教育部长江学者和创新团队发展计划(批准号:IRT_15R23)资助的课题.
    [1]

    Mazin I I 2015 Nature 525 40

    [2]

    Bednorz J G, Mller K A 1986 Z. Physik. B 64 189

    [3]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese)[赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶1987科学通报32 177]

    [4]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412 (in Chinese)[赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清1987科学通报32 412]

    [5]

    Hor P H, Meng R L, Wang Y Q, Gao L, Huang Z J, Bechtold J, Forster K, Chu C W 1987 Phys. Rev. Lett. 58 1891

    [6]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [7]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [8]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [9]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [10]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [11]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [12]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [15]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [16]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

    [17]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [18]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [19]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [20]

    Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 Phys. Rev. B 91 180502

    [21]

    Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L, Ma Y 2015 Sci. Rep. 5 15433

    [22]

    Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O, Zhou H Y 2013 Phys. Rev. Lett. 110 165504

    [23]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J 2011 Phys. Rev. Lett. 107 255503

    [24]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835

    [25]

    Troyan I, Gavriliuk A, Rffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P, Eremets M I 2016 Science 351 1303

    [26]

    Huang X, Wang X, Duan D, Bertil. S, Xin L, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [27]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712

    [28]

    Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T, Suzuki N 2016 Sci. Rep. 6 23160

    [29]

    Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F, Ma Y 2016 Phys. Rev. B 93 020103

    [30]

    Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z, Prakapenka V B 2016 Phys. Rev. B 93 174105

    [31]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511

    [32]

    Papaconstantopoulos D A, Klein B M, Mehl M J, Pickett W E 2015 Phys. Rev. B 91 184511

    [33]

    Quan Y, Pickett W E 2016 Phys. Rev. B 93 104526

    [34]

    Ge Y, Zhang F, Yao Y 2016 Phys. Rev. B 93 224513

    [35]

    Abe K, Ashcroft N W 2011 Phys. Rev. B 84 104118

    [36]

    Jin X, Meng X, He Z, Ma Y, Liu B, Cui T, Zou G, Mao H K 2010 Proc. Natl. Acad. Sci. USA 107 9969

    [37]

    Kim D Y, Scheicher R H, Ahuja R 2008 Phys. Rev. B 78 100102

    [38]

    Wang H, John S T, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463

    [39]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [40]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [41]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640

    [42]

    Baettig P, Zurek E 2011 Phys. Rev. Lett. 106 237002

    [43]

    Hooper J, Zurek E 2012 J. Phys. Chem. C 116 13322

    [44]

    Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B, Cui T 2012 Phys. Rev. B 86 014118

    [45]

    Hooper J, Zurek E 2012 Chem. A:Europ. J. 18 5013

    [46]

    Shamp A, Hooper J, Zurek E 2012 Inorg. Chem. 51 9333

    [47]

    Lonie D C, Hooper J, Altintas B, Zurek E 2013 Phys. Rev. B 87 054107

    [48]

    Hooper J, Terpstra T, Shamp A, Zurek E 2014 J. Phys. Chem. C 118 6433

    [49]

    Wang Y, Wang H, Tse J S, Iitaka T, Ma Y 2015 Phys. Chem. Chem. Phys. 17 19379

    [50]

    Hooper J, Altintas B, Shamp A, Zurek E 2013 J. Phys. Chem. C 117 2982

    [51]

    Liu Y, Duan D, Tian F, Liu H, Wang C, Huang X, Li D, Ma Y, Liu B, Cui T 2015 Inorg. Chem. 54 9924

    [52]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002

    [53]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004

    [54]

    Gao G, Oganov A R, Li P, Li Z, Wang H, Cui T, Ma Y, Bergara A, Lyakhov A O, Iitaka T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 1317

    [55]

    Zaleski-Ejgierd P, Hoffmann R, Ashcroft N W 2011 Phys. Rev. Lett. 107 037002

    [56]

    Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W, Ma Y 2016 Chem. Mater. 28 1746

    [57]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Huang X, Zhao Z, Yu H, Liu B, Cui T 2015 arXiv:1506.03889[cond-mat.supr-con]

    [58]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Yu H, Xu C, Shao Z, Liu B, Cui T 2015 arXiv:1511.05291[cond-mat.supr-con]

    [59]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [60]

    Liu Y, Duan D, Tian F, Wang C, Wu G, Ma Y, Yu H, Li D, Liu B, Cui T 2015 RSC Adv. 5 103445

    [61]

    Duan D, Huang X, Tian F, Liu Y, Li D, Yu H, Liu B, Tian W, Cui T 2015 J. Phys. Chem. A 119 11059

    [62]

    Duan D, Tian F, Liu Y, Huang X, Li D, Yu H, Ma Y, Liu B, Cui T 2015 Phys. Chem. Chem. Phys. 17 32335

    [63]

    Shamp A, Zurek E 2015 J. Phys. Chem. Lett. 6 4067

    [64]

    Strobel T A, Somayazulu M, Hemley R J 2009 Phys. Rev. Lett. 103 065701

    [65]

    Wang S, Mao H K, Chen X J, Mao W L 2009 Proc. Natl. Acad. Sci. USA 106 14763

    [66]

    Strobel T A, Chen X J, Somayazulu M, Hemley R J 2010 J. Chem. Phys. 133 164512

    [67]

    Chen X Q, Wang S, Mao W L, Fu C L 2010 Phys. Rev. B 82 104115

    [68]

    Michel K, Liu Y, Ozolins V 2010 Phys. Rev. B 82 174103

    [69]

    Li Y, Gao G, Li Q, Ma Y, Zou G 2010 Phys. Rev. B 82 064104

    [70]

    Yao Y, Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893

    [71]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 15708

    [72]

    Zhong G, Zhang C, Chen X, Li Y, Zhang R, Lin H 2012 J. Phys. Chem. C 116 5225

    [73]

    Thomson J J 1911 Philos. Mag. 21 225

    [74]

    Coulson C A 1935 Math. Proc. Cambridge Philos. Soc. 31 244

    [75]

    Oka T 2013 Chem. Rev. 113 8738

    [76]

    Stärck J, Meyer W 1993 Chem. Phys. 176 83

    [77]

    Wang W, Belyaev A K, Xu Y, Zhu A, Xiao C, Yang X F 2003 Chem. Phys. Lett. 377 512

    [78]

    Golser R, Gnaser H, Kutschera W, Priller A, Steier P, Wallner A,Čížek M, Horáček J, Domcke W 2005 Phys. Rev. Lett. 94 223003

    [79]

    Duan D, Tian F, Huang X, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 arXiv:1504.01196[cond-mat.supr-con]

    [80]

    Wang Z, Wang H, Tse J S, Iitaka T, Ma Y 2015 Chem. Sci. 6 522

    [81]

    Zeng Q, Yu S, Li D, Frapperb G, Oganov A R 2015 arXiv:1508.01395[cond-mat.mtrl-sci]

    [82]

    Pickett W E 2001 Physica B 296 112

    [83]

    Mazin I I 2010 Nature 464 183

  • [1]

    Mazin I I 2015 Nature 525 40

    [2]

    Bednorz J G, Mller K A 1986 Z. Physik. B 64 189

    [3]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese)[赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶1987科学通报32 177]

    [4]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412 (in Chinese)[赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清1987科学通报32 412]

    [5]

    Hor P H, Meng R L, Wang Y Q, Gao L, Huang Z J, Bechtold J, Forster K, Chu C W 1987 Phys. Rev. Lett. 58 1891

    [6]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [7]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [8]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [9]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [10]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [11]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [12]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [15]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [16]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

    [17]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [18]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [19]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [20]

    Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 Phys. Rev. B 91 180502

    [21]

    Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L, Ma Y 2015 Sci. Rep. 5 15433

    [22]

    Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O, Zhou H Y 2013 Phys. Rev. Lett. 110 165504

    [23]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J 2011 Phys. Rev. Lett. 107 255503

    [24]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835

    [25]

    Troyan I, Gavriliuk A, Rffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P, Eremets M I 2016 Science 351 1303

    [26]

    Huang X, Wang X, Duan D, Bertil. S, Xin L, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [27]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712

    [28]

    Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T, Suzuki N 2016 Sci. Rep. 6 23160

    [29]

    Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F, Ma Y 2016 Phys. Rev. B 93 020103

    [30]

    Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z, Prakapenka V B 2016 Phys. Rev. B 93 174105

    [31]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511

    [32]

    Papaconstantopoulos D A, Klein B M, Mehl M J, Pickett W E 2015 Phys. Rev. B 91 184511

    [33]

    Quan Y, Pickett W E 2016 Phys. Rev. B 93 104526

    [34]

    Ge Y, Zhang F, Yao Y 2016 Phys. Rev. B 93 224513

    [35]

    Abe K, Ashcroft N W 2011 Phys. Rev. B 84 104118

    [36]

    Jin X, Meng X, He Z, Ma Y, Liu B, Cui T, Zou G, Mao H K 2010 Proc. Natl. Acad. Sci. USA 107 9969

    [37]

    Kim D Y, Scheicher R H, Ahuja R 2008 Phys. Rev. B 78 100102

    [38]

    Wang H, John S T, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463

    [39]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [40]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [41]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640

    [42]

    Baettig P, Zurek E 2011 Phys. Rev. Lett. 106 237002

    [43]

    Hooper J, Zurek E 2012 J. Phys. Chem. C 116 13322

    [44]

    Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B, Cui T 2012 Phys. Rev. B 86 014118

    [45]

    Hooper J, Zurek E 2012 Chem. A:Europ. J. 18 5013

    [46]

    Shamp A, Hooper J, Zurek E 2012 Inorg. Chem. 51 9333

    [47]

    Lonie D C, Hooper J, Altintas B, Zurek E 2013 Phys. Rev. B 87 054107

    [48]

    Hooper J, Terpstra T, Shamp A, Zurek E 2014 J. Phys. Chem. C 118 6433

    [49]

    Wang Y, Wang H, Tse J S, Iitaka T, Ma Y 2015 Phys. Chem. Chem. Phys. 17 19379

    [50]

    Hooper J, Altintas B, Shamp A, Zurek E 2013 J. Phys. Chem. C 117 2982

    [51]

    Liu Y, Duan D, Tian F, Liu H, Wang C, Huang X, Li D, Ma Y, Liu B, Cui T 2015 Inorg. Chem. 54 9924

    [52]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002

    [53]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004

    [54]

    Gao G, Oganov A R, Li P, Li Z, Wang H, Cui T, Ma Y, Bergara A, Lyakhov A O, Iitaka T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 1317

    [55]

    Zaleski-Ejgierd P, Hoffmann R, Ashcroft N W 2011 Phys. Rev. Lett. 107 037002

    [56]

    Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W, Ma Y 2016 Chem. Mater. 28 1746

    [57]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Huang X, Zhao Z, Yu H, Liu B, Cui T 2015 arXiv:1506.03889[cond-mat.supr-con]

    [58]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Yu H, Xu C, Shao Z, Liu B, Cui T 2015 arXiv:1511.05291[cond-mat.supr-con]

    [59]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [60]

    Liu Y, Duan D, Tian F, Wang C, Wu G, Ma Y, Yu H, Li D, Liu B, Cui T 2015 RSC Adv. 5 103445

    [61]

    Duan D, Huang X, Tian F, Liu Y, Li D, Yu H, Liu B, Tian W, Cui T 2015 J. Phys. Chem. A 119 11059

    [62]

    Duan D, Tian F, Liu Y, Huang X, Li D, Yu H, Ma Y, Liu B, Cui T 2015 Phys. Chem. Chem. Phys. 17 32335

    [63]

    Shamp A, Zurek E 2015 J. Phys. Chem. Lett. 6 4067

    [64]

    Strobel T A, Somayazulu M, Hemley R J 2009 Phys. Rev. Lett. 103 065701

    [65]

    Wang S, Mao H K, Chen X J, Mao W L 2009 Proc. Natl. Acad. Sci. USA 106 14763

    [66]

    Strobel T A, Chen X J, Somayazulu M, Hemley R J 2010 J. Chem. Phys. 133 164512

    [67]

    Chen X Q, Wang S, Mao W L, Fu C L 2010 Phys. Rev. B 82 104115

    [68]

    Michel K, Liu Y, Ozolins V 2010 Phys. Rev. B 82 174103

    [69]

    Li Y, Gao G, Li Q, Ma Y, Zou G 2010 Phys. Rev. B 82 064104

    [70]

    Yao Y, Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893

    [71]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 15708

    [72]

    Zhong G, Zhang C, Chen X, Li Y, Zhang R, Lin H 2012 J. Phys. Chem. C 116 5225

    [73]

    Thomson J J 1911 Philos. Mag. 21 225

    [74]

    Coulson C A 1935 Math. Proc. Cambridge Philos. Soc. 31 244

    [75]

    Oka T 2013 Chem. Rev. 113 8738

    [76]

    Stärck J, Meyer W 1993 Chem. Phys. 176 83

    [77]

    Wang W, Belyaev A K, Xu Y, Zhu A, Xiao C, Yang X F 2003 Chem. Phys. Lett. 377 512

    [78]

    Golser R, Gnaser H, Kutschera W, Priller A, Steier P, Wallner A,Čížek M, Horáček J, Domcke W 2005 Phys. Rev. Lett. 94 223003

    [79]

    Duan D, Tian F, Huang X, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 arXiv:1504.01196[cond-mat.supr-con]

    [80]

    Wang Z, Wang H, Tse J S, Iitaka T, Ma Y 2015 Chem. Sci. 6 522

    [81]

    Zeng Q, Yu S, Li D, Frapperb G, Oganov A R 2015 arXiv:1508.01395[cond-mat.mtrl-sci]

    [82]

    Pickett W E 2001 Physica B 296 112

    [83]

    Mazin I I 2010 Nature 464 183

  • [1] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [2] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [3] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [4] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [5] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [6] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [7] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [8] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [9] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [10] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [11] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [12] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [13] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [14] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [15] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [16] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [17] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [18] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [19] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [20] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1906
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 修回日期:  2016-12-03
  • 刊出日期:  2017-02-05

高压下富氢化合物的结构与奇异超导电性

  • 1. 吉林大学物理学院, 超硬材料国家重点实验室, 长春 130012
  • 通信作者: 崔田, cuitian@jlu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51632002,11674122,51572108,11204100,11504127,11634004)和教育部长江学者和创新团队发展计划(批准号:IRT_15R23)资助的课题.

摘要: 在富氢化合物中,一方面由于非氢元素的存在会对氢的子晶格产生化学预压作用,这些体系比纯氢更容易金属化.另一方面由于含氢量较多,富氢化合物可能会具有像金属氢那样较高的超导转变温度,有望成为超导家族的新成员氢基超导体.高压下富氢化合物的结构及超导电性已成为物理、材料等多学科的研究热点,最近理论和实验发现硫氢化合物在高压下的超导转变温度达到200 K,创造了高温超导新纪录,进一步推动了人们对富氢化合物超导电性的研究.本文主要介绍了近年来高压下几种典型富氢化合物的结构、稳定性、原子间相互作用、金属化及超导电性,希望未来能在富氢化合物中寻找到具有更高超导转变温度的超导体.

English Abstract

参考文献 (83)

目录

    /

    返回文章
    返回