搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al3+/Mo6+双离子取代ZrV2O7中Zr4+/V5+实现近零膨胀

袁保合 曹文思 葛向红 程永光 刘献省 梁二军

Al3+/Mo6+双离子取代ZrV2O7中Zr4+/V5+实现近零膨胀

袁保合, 曹文思, 葛向红, 程永光, 刘献省, 梁二军
PDF
导出引用
导出核心图
  • 采用固相烧结法制备了Zr1-xAlxV2-xMoxO7(0 x 0.9),并通过调整Al3+/Mo6+对ZrV2O7中的Zr4+/V5+离子替代量来实现近零膨胀.对于较小的x值(x 0.3),材料保持了与ZrV2O7相同的立方相结构.随着Al3+/Mo6+替代量的增加,(Al/Zr)-和(Mo/V)+之间的库仑相互作用逐渐加强,这种库仑相互作用导致材料中未发生畸变的立方相晶体结构逐渐减少.当x 0.7时,材料中立方相晶体结构完全消失.在425750 K温度区间内,Zr0.5Al0.5V1.5Mo0.5O7展示出近零膨胀性质(-0.3910-6 K-1).Zr0.5Al0.5V1.5Mo0.5O7的低热膨胀性能可能与Al3+/Mo6+对ZrV2O7中Zr4+/V5+部分替代引起部分晶体结构发生的畸变及其对未替代部分的晶格结构的影响有关.
      通信作者: 梁二军, ejliang@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574276)资助的课题.
    [1]

    Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B, Xing X R 2013 Sci. Rep. 3 2458

    [2]

    Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317

    [3]

    Yao W J, Jiang X X, Huang R J, Li W, Huang C J, Lin Z S, Li L F, Chen C T 2014 Chem. Commun. 50 13499

    [4]

    Closmann C, Sleight A W, Hargarth J C 1998 J. Solid State Chem. 139 424

    [5]

    Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J, Kowach G R 2014 Phys. Rev. Lett. 112 045505

    [6]

    Liu Q Q, Yu Z Q, Chen G F, Yao J L, Sun X J, Cheng X N, Yang J 2014 Ceram. Int. 40 8195

    [7]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloys Compd. 553 1

    [8]

    Khosrovani N, Sleight A W 1997 J. Solid State Chem. 132 355

    [9]

    Khosrovani N, Korthuis V, Sleight A W 1996 Inorg. Chem. 35 485

    [10]

    Withers R L, Evans J S O, Hanson J, Sleight A W 1998 J. Solid State Chem. 137 161

    [11]

    Withers R L, Tabira Y, Evans J S O, King I J, Sleight A W 2001 J. Solid State Chem. 157 186

    [12]

    Carlson S, Andersen A M K 2001 J. Appl. Crystallogr. 34 7

    [13]

    Hemamala U L C, El-Ghussein F, Muthu D V S, Andersen A M K, Carlson S, Ouyang L, Kruger M B 2007 Solid State Commun. 141 680

    [14]

    Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J, Liang E J 2016 Chin. Phys. Lett. 33 046503

    [15]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [16]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [17]

    Chu L H, Wang C, Sun Y, Li M C, Wan Z P, Wang Y, Dou S Y, Chu Y 2015 Chin. Phys. Lett. 32 047501

    [18]

    Guo X G, Lin J C, Tong P, Wang M, WU Y, Yang C, Song B, Liu S, Sun Y P 2015 Appl. Phys. Lett. 107 202406

    [19]

    Wang F F, Xie Y, Chen J, Fu H G, Xing X R 2013 Appl. Phys. Lett. 103 221901

    [20]

    Hu P H, Chen J, Sun C, Deng J X, Xing X R, Snyder R L 2011 J. Am. Ceram. Soc. 94 3600.

    [21]

    Korthuis V, Khosrovani N, Sleight A W 1995 J. Series Chem. Mater. 7 412

    [22]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)[袁焕丽, 袁保合, 李芳, 梁二军2012物理学报61 226502]

    [23]

    Sahoo P P, Sumithra S, Madras G, Row T N G 2011 Inorg. Chem. 50 8774

    [24]

    Liu Q Q, Yang J, Sun X J, Cheng X N, Tang H, Li H H 2014 Appl. Surf. Sci. 313 41

    [25]

    Hisashige T, Yamaguchi T, Tsuji T, Yamamura Y 2006 J. Ceram. Soc. Jpn. 114 607

    [26]

    Yanase I, Kojima T, Kobayashi H 2011 Solid State Commun. 151 595

    [27]

    Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J, Liang E J 2014 Chin. Phys. Lett. 31 076501

    [28]

    Yuan B H, Liu X S, Song W B, Cheng Y G, Liang E J, Chao M J 2014 Phys. Lett. A 378 3397

    [29]

    Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Liang E J, Chao M J 2015 Mater. Chem. Phys. 170 162

    [30]

    Petruska E A, Muthu D V S, Carlson S, Krogh Andersen A M, Ouyang L, Kyuger M B 2010 Solid State Commun. 150 235

  • [1]

    Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B, Xing X R 2013 Sci. Rep. 3 2458

    [2]

    Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317

    [3]

    Yao W J, Jiang X X, Huang R J, Li W, Huang C J, Lin Z S, Li L F, Chen C T 2014 Chem. Commun. 50 13499

    [4]

    Closmann C, Sleight A W, Hargarth J C 1998 J. Solid State Chem. 139 424

    [5]

    Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J, Kowach G R 2014 Phys. Rev. Lett. 112 045505

    [6]

    Liu Q Q, Yu Z Q, Chen G F, Yao J L, Sun X J, Cheng X N, Yang J 2014 Ceram. Int. 40 8195

    [7]

    Liu X S, Cheng F X, Wang J Q, Song W B, Yuan B H, Liang E J 2013 J. Alloys Compd. 553 1

    [8]

    Khosrovani N, Sleight A W 1997 J. Solid State Chem. 132 355

    [9]

    Khosrovani N, Korthuis V, Sleight A W 1996 Inorg. Chem. 35 485

    [10]

    Withers R L, Evans J S O, Hanson J, Sleight A W 1998 J. Solid State Chem. 137 161

    [11]

    Withers R L, Tabira Y, Evans J S O, King I J, Sleight A W 2001 J. Solid State Chem. 157 186

    [12]

    Carlson S, Andersen A M K 2001 J. Appl. Crystallogr. 34 7

    [13]

    Hemamala U L C, El-Ghussein F, Muthu D V S, Andersen A M K, Carlson S, Ouyang L, Kruger M B 2007 Solid State Commun. 141 680

    [14]

    Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J, Liang E J 2016 Chin. Phys. Lett. 33 046503

    [15]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [16]

    Li Q J, Yuan B H, Song W B, Liang E J, Yuan B 2012 Chin. Phys. B 21 046501

    [17]

    Chu L H, Wang C, Sun Y, Li M C, Wan Z P, Wang Y, Dou S Y, Chu Y 2015 Chin. Phys. Lett. 32 047501

    [18]

    Guo X G, Lin J C, Tong P, Wang M, WU Y, Yang C, Song B, Liu S, Sun Y P 2015 Appl. Phys. Lett. 107 202406

    [19]

    Wang F F, Xie Y, Chen J, Fu H G, Xing X R 2013 Appl. Phys. Lett. 103 221901

    [20]

    Hu P H, Chen J, Sun C, Deng J X, Xing X R, Snyder R L 2011 J. Am. Ceram. Soc. 94 3600.

    [21]

    Korthuis V, Khosrovani N, Sleight A W 1995 J. Series Chem. Mater. 7 412

    [22]

    Yuan H L, Yuan B H, Li F, Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)[袁焕丽, 袁保合, 李芳, 梁二军2012物理学报61 226502]

    [23]

    Sahoo P P, Sumithra S, Madras G, Row T N G 2011 Inorg. Chem. 50 8774

    [24]

    Liu Q Q, Yang J, Sun X J, Cheng X N, Tang H, Li H H 2014 Appl. Surf. Sci. 313 41

    [25]

    Hisashige T, Yamaguchi T, Tsuji T, Yamamura Y 2006 J. Ceram. Soc. Jpn. 114 607

    [26]

    Yanase I, Kojima T, Kobayashi H 2011 Solid State Commun. 151 595

    [27]

    Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J, Liang E J 2014 Chin. Phys. Lett. 31 076501

    [28]

    Yuan B H, Liu X S, Song W B, Cheng Y G, Liang E J, Chao M J 2014 Phys. Lett. A 378 3397

    [29]

    Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Liang E J, Chao M J 2015 Mater. Chem. Phys. 170 162

    [30]

    Petruska E A, Muthu D V S, Carlson S, Krogh Andersen A M, Ouyang L, Kyuger M B 2010 Solid State Commun. 150 235

  • [1] 袁焕丽, 袁保合, 李芳, 梁二军. ZrV2-xPxO7固溶体的相变与热膨胀性质的研究 . 物理学报, 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [2] 王承章, 王怀玉, 章立源. Zn局域替代YBa2Cu3O7中的Cu引起的电子结构变化. 物理学报, 1991, 40(11): 1862-1868. doi: 10.7498/aps.40.1862
    [3] 张金仓, 陈镇平, 薛运才, 苏玉玲, 宫世成. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [4] 路芳, 张兴华, 卢遵铭, 徐学文, 唐成春. Sr和Ba替代对Eu掺杂Ca2.955Si2O7的结构和发光特性的影响研究. 物理学报, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [5] 谢伟, 王银海, 胡义华, 吴浩怡, 邓柳咏, 廖峰. Ca2+离子替代对Sr4Al14O25:Eu2+,Dy3+结构和发光性能的影响. 物理学报, 2010, 59(2): 1148-1154. doi: 10.7498/aps.59.1148
    [6] 马东平, 徐益荪, 胡志雄. 三角畸变立方晶场中d2离子的零场分裂与劈裂因子. 物理学报, 1982, 31(7): 904-914. doi: 10.7498/aps.31.904
    [7] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
    [8] 武志燕, 邝小渝, 李辉, 毛爱杰, 王振华. 蓝宝石(α-Al2O3:Fe3+)体系基态分裂与局域晶格畸变的研究. 物理学报, 2014, 63(1): 017102. doi: 10.7498/aps.63.017102
    [9] 庄飞, 许祝安, 张宣嘉, 张小俊, 王劲松, 张其瑞. YBa2-xPrxCu3O7-δ体系中的Pr替代效应. 物理学报, 1995, 44(5): 806-810. doi: 10.7498/aps.44.806
    [10] 李鹏飞, 曹海静, 郑莉, 蒋秀丽. 准周期调制下自旋1/2反铁磁XY模型中的晶格畸变行为. 物理学报, 2013, 62(15): 157501. doi: 10.7498/aps.62.157501
    [11] 孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [12] 卢成, 王丽, 卢志文, 宋海珍, 李根全. ZnS:Cr2+中局域晶格结构和自旋单态对零场分裂参量的贡献. 物理学报, 2011, 60(8): 087601. doi: 10.7498/aps.60.087601
    [13] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [14] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对\begin{document}$ {\rm YBa_2Cu_3O_{7–\delta}} $\end{document}薄膜微观结构及载流特性的影响. 物理学报, 2020, 69(7): 077401. doi: 10.7498/aps.69.20191914
    [15] 彭定坤, 胡俊宝, 阮耀钟, 李立平, 胡学龙, 张裕恒. 正交和四方YBa2Cu3O7-x的热膨胀系数. 物理学报, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [16] 曾令之, 蒋毅坚, 傅易, 周亚栋. Li2B4O7晶体的晶格振动光谱. 物理学报, 1993, 42(1): 154-160. doi: 10.7498/aps.42.154
    [17] 李平林, 张金仓, 曹桂新, 邓冬梅, 敬超, 曹世勋, 刘丽华, 董成. 磁性离子Fe和Ni替代YBCO体系的结构特征和载流子局域化. 物理学报, 2004, 53(4): 1223-1231. doi: 10.7498/aps.53.1223
    [18] 林玲, 朱家杰, 方弘. 金属离子掺杂的Lu2Si2O7的第一性原理研究 . 物理学报, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [19] 严成锋, 赵广军, 杭 寅, 张连翰, 徐 军. Ce:Lu2Si2O7闪烁晶体的结构和光谱特性. 物理学报, 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [20] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
  • 引用本文:
    Citation:
计量
  • 文章访问数:  536
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-01-11
  • 刊出日期:  2017-04-05

Al3+/Mo6+双离子取代ZrV2O7中Zr4+/V5+实现近零膨胀

  • 1. 华北水利水电大学电力学院, 郑州 450011;
  • 2. 中原工学院理学院, 郑州 450007;
  • 3. 河南工程学院理学院分析测试中心, 郑州 451191;
  • 4. 河南大学光伏材料省重点实验室, 开封 475004;
  • 5. 郑州大学物理工程学院, 教育部材料物理重点实验室, 郑州 450052
  • 通信作者: 梁二军, ejliang@zzu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11574276)资助的课题.

摘要: 采用固相烧结法制备了Zr1-xAlxV2-xMoxO7(0 x 0.9),并通过调整Al3+/Mo6+对ZrV2O7中的Zr4+/V5+离子替代量来实现近零膨胀.对于较小的x值(x 0.3),材料保持了与ZrV2O7相同的立方相结构.随着Al3+/Mo6+替代量的增加,(Al/Zr)-和(Mo/V)+之间的库仑相互作用逐渐加强,这种库仑相互作用导致材料中未发生畸变的立方相晶体结构逐渐减少.当x 0.7时,材料中立方相晶体结构完全消失.在425750 K温度区间内,Zr0.5Al0.5V1.5Mo0.5O7展示出近零膨胀性质(-0.3910-6 K-1).Zr0.5Al0.5V1.5Mo0.5O7的低热膨胀性能可能与Al3+/Mo6+对ZrV2O7中Zr4+/V5+部分替代引起部分晶体结构发生的畸变及其对未替代部分的晶格结构的影响有关.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回