搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空非均匀等离子体鞘套中太赫兹波的传播特性

陈伟 郭立新 李江挺 淡荔

时空非均匀等离子体鞘套中太赫兹波的传播特性

陈伟, 郭立新, 李江挺, 淡荔
PDF
导出引用
导出核心图
  • 高超声速飞行器再入地面的过程中,其周围等离子体的电子密度是非均匀且随时间变化的. 对于不同的再入高度,飞行器周围的温度和压强也会发生改变. 因此,研究电磁波在时空非均匀等离子体鞘套中的传播特性意义重大. 首先建立了时变非均匀的等离子体鞘套模型,然后通过经验公式得到温度、压强与碰撞频率三者的关系. 采用时域有限差分方法计算了太赫兹波段中不同电子密度弛豫时间、温度、压强时的反射系数、透射系数和吸收率. 研究结果表明:在太赫兹波段中,电子密度的弛豫时间越长,温度越高,压强越大,电磁波越容易穿透等离子体;弛豫时间越短,温度越低,压强越小,等离子体对电磁波吸收率的变化越明显. 这些结果为解决黑障问题提供了理论依据.
      通信作者: 郭立新, lxguo@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61431010,61301065)和国家自然科学基金创新研究群体科学基金(批准号:61621005)资助的课题.
    [1]

    Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201 (in Chinese) [薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201]

    [2]

    Sang C F, Dai S Y, Sun J Z, Bonnin X, Xu Q, Ding F, Wang D Z 2014 Chin. Phys. B 23 115201

    [3]

    Li Y R, Ma J X, Zheng Y B, Zhang W G 2010 Chin. Phys. B 19 085201

    [4]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 065204

    [5]

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [6]

    Cui P Y, Dou Q, Gao A 2014 J. Astr. 35 1 (in Chinese) [催平远, 窦强, 高艾 2014 宇航学报 35 1]

    [7]

    Fang T Z, Jiang N, Wang L 2005 Chin. Phys. B 14 2256

    [8]

    Wang J L, Zhang J L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. B 13 0065

    [9]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton: Langley Research Center) NASA-TP-2867

    [10]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232

    [11]

    Jones W L, Cross A E 1972 Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second (Hampton: Langley Research Center) NASA-TN-D-6617

    [12]

    Stenzel R L, Urrutia J M 2013 J. Appl. Phys. 113 103303

    [13]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. 7 879

    [14]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [15]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Pu S Z 2010 Phys. Plasmas 17 1133044

    [16]

    Li S T, Li J, Zhu Z B, Cui W Z 2015 J. Terahertz Sci. Electron. Informat. Techn. 13 203 (in Chinese) [李拴涛, 李军, 朱忠博, 崔万照 2015 太赫兹科学与电子信息学报 13 203]

    [17]

    Chen W B, Gong X Y, Deng X J, Feng J, Huang G Y 2014 Acta Phys. Sin. 63 194101 (in Chinese) [陈文波, 龚学余, 邓贤君, 冯军, 黄国玉 2014 物理学报 63 194101]

    [18]

    Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵 2013 博士学位论文 (成都: 电子科技大学)]

    [19]

    Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235

    [20]

    Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146

    [21]

    Wang M Y, Yu M X, Xu Z T, Li G P, Jiang B J, Xu J 2010 IEEE Trans. Plasma Sci. 43 4182

    [22]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) p259 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259页]

    [23]

    Yu P P 2012 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese) [于萍萍 2012 硕士学位论文 (镇江: 江苏大学)]

    [24]

    Jin S S 2011 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [金莎莎 2011 硕士学位论文 (西安: 西安电子科技大学)]

    [25]

    Liu Z W, Bao W M, Li X P, Liu D L 2014 Acta Phys. Sin. 23 235201 (in Chinese) [刘智惟, 包为民, 李小平, 刘东林 2014 物理学报 23 235201]

    [26]

    Potter D L 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p3239

    [27]

    Liu S B 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [刘少斌 2004 博士学位论文 (长沙: 国防科学技术大学)]

  • [1]

    Bo Y, Zhao Q, Luo X G, Liu Y, Chen Y X, Liu J W 2016 Acta Phys. Sin. 65 035201 (in Chinese) [薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫 2016 物理学报 65 035201]

    [2]

    Sang C F, Dai S Y, Sun J Z, Bonnin X, Xu Q, Ding F, Wang D Z 2014 Chin. Phys. B 23 115201

    [3]

    Li Y R, Ma J X, Zheng Y B, Zhang W G 2010 Chin. Phys. B 19 085201

    [4]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 065204

    [5]

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [6]

    Cui P Y, Dou Q, Gao A 2014 J. Astr. 35 1 (in Chinese) [催平远, 窦强, 高艾 2014 宇航学报 35 1]

    [7]

    Fang T Z, Jiang N, Wang L 2005 Chin. Phys. B 14 2256

    [8]

    Wang J L, Zhang J L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. B 13 0065

    [9]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton: Langley Research Center) NASA-TP-2867

    [10]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Administration) NASA-CR-2232

    [11]

    Jones W L, Cross A E 1972 Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second (Hampton: Langley Research Center) NASA-TN-D-6617

    [12]

    Stenzel R L, Urrutia J M 2013 J. Appl. Phys. 113 103303

    [13]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerospace Electron. Syst. 7 879

    [14]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445

    [15]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Pu S Z 2010 Phys. Plasmas 17 1133044

    [16]

    Li S T, Li J, Zhu Z B, Cui W Z 2015 J. Terahertz Sci. Electron. Informat. Techn. 13 203 (in Chinese) [李拴涛, 李军, 朱忠博, 崔万照 2015 太赫兹科学与电子信息学报 13 203]

    [17]

    Chen W B, Gong X Y, Deng X J, Feng J, Huang G Y 2014 Acta Phys. Sin. 63 194101 (in Chinese) [陈文波, 龚学余, 邓贤君, 冯军, 黄国玉 2014 物理学报 63 194101]

    [18]

    Zheng L 2013 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [郑灵 2013 博士学位论文 (成都: 电子科技大学)]

    [19]

    Chen W, Guo L X, Li J T, Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235

    [20]

    Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146

    [21]

    Wang M Y, Yu M X, Xu Z T, Li G P, Jiang B J, Xu J 2010 IEEE Trans. Plasma Sci. 43 4182

    [22]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) p259 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259页]

    [23]

    Yu P P 2012 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese) [于萍萍 2012 硕士学位论文 (镇江: 江苏大学)]

    [24]

    Jin S S 2011 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [金莎莎 2011 硕士学位论文 (西安: 西安电子科技大学)]

    [25]

    Liu Z W, Bao W M, Li X P, Liu D L 2014 Acta Phys. Sin. 23 235201 (in Chinese) [刘智惟, 包为民, 李小平, 刘东林 2014 物理学报 23 235201]

    [26]

    Potter D L 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p3239

    [27]

    Liu S B 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [刘少斌 2004 博士学位论文 (长沙: 国防科学技术大学)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1346
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-12
  • 修回日期:  2017-01-13
  • 刊出日期:  2017-04-05

时空非均匀等离子体鞘套中太赫兹波的传播特性

  • 1. 西安电子科技大学物理与光电工程学院, 西安 710071
  • 通信作者: 郭立新, lxguo@xidian.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61431010,61301065)和国家自然科学基金创新研究群体科学基金(批准号:61621005)资助的课题.

摘要: 高超声速飞行器再入地面的过程中,其周围等离子体的电子密度是非均匀且随时间变化的. 对于不同的再入高度,飞行器周围的温度和压强也会发生改变. 因此,研究电磁波在时空非均匀等离子体鞘套中的传播特性意义重大. 首先建立了时变非均匀的等离子体鞘套模型,然后通过经验公式得到温度、压强与碰撞频率三者的关系. 采用时域有限差分方法计算了太赫兹波段中不同电子密度弛豫时间、温度、压强时的反射系数、透射系数和吸收率. 研究结果表明:在太赫兹波段中,电子密度的弛豫时间越长,温度越高,压强越大,电磁波越容易穿透等离子体;弛豫时间越短,温度越低,压强越小,等离子体对电磁波吸收率的变化越明显. 这些结果为解决黑障问题提供了理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回