-
在O2/CO2气氛下,参与性介质的非灰气体辐射特性表现出不同于空气气氛下的特性,因此,非灰气体辐射模型的选择和应用在换热过程中将变得十分重要.基于统计窄谱带模型,本文综合评估近年发展应用较广的灰气体加权和(WSGG)模型.结果表明,几种WSGG模型的预测值总体趋势正确,但仍存在着一定的差别.对于发射率,Dorigon等(2013 Int. J. Heat Mass Transfer 64 863)和Bordbar等(2014 Combust. Flame 161 2435)的WSGG模型与基准模型符合较好,相对误差小于20%.与离散坐标法结合,本文求解了PH2O/PCO2=1,2时的一维平行平板间辐射换热问题.结果显示,由Dorigon等和Bordbar等的WSGG模型得到的辐射热源和热流密度分布的相对误差均较小(10%左右).Johansson等(2011 Combust. Flame 158 893)和Bordbar等的WSGG模型具有更广的适用范围.
[1] Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303
[2] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]
[3] Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]
[4] Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]
[5] Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]
[6] Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736
[7] Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66
[8] Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20
[9] Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602
[10] Modest M F 1991 J. Heat Transfer 113 650
[11] Soufiani A, Djavdan E 1994 Combust. Flame 97 240
[12] Denison M K, Webb B W 1993 J. Heat Transfer 115 1004
[13] Denison M K, Webb B W 1995 J. Heat Transfer 117 359
[14] Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297
[15] Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699
[16] Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335
[17] Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609
[18] Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228
[19] Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357
[20] Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893
[21] Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275
[22] Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419
[23] Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863
[24] Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435
[25] Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791
[26] Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987
[27] Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349
[28] Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227
[29] Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796
-
[1] Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303
[2] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]
[3] Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]
[4] Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]
[5] Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]
[6] Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736
[7] Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66
[8] Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20
[9] Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602
[10] Modest M F 1991 J. Heat Transfer 113 650
[11] Soufiani A, Djavdan E 1994 Combust. Flame 97 240
[12] Denison M K, Webb B W 1993 J. Heat Transfer 115 1004
[13] Denison M K, Webb B W 1995 J. Heat Transfer 117 359
[14] Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297
[15] Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699
[16] Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335
[17] Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609
[18] Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228
[19] Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357
[20] Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893
[21] Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275
[22] Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419
[23] Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863
[24] Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435
[25] Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791
[26] Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987
[27] Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349
[28] Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227
[29] Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796
引用本文: |
Citation: |
计量
- 文章访问数: 1411
- PDF下载量: 230
- 被引次数: 0