搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰气体加权和辐射模型综合评估及分析

楚化强 冯艳 曹文健 任飞 顾明言

灰气体加权和辐射模型综合评估及分析

楚化强, 冯艳, 曹文健, 任飞, 顾明言
PDF
导出引用
导出核心图
  • 在O2/CO2气氛下,参与性介质的非灰气体辐射特性表现出不同于空气气氛下的特性,因此,非灰气体辐射模型的选择和应用在换热过程中将变得十分重要.基于统计窄谱带模型,本文综合评估近年发展应用较广的灰气体加权和(WSGG)模型.结果表明,几种WSGG模型的预测值总体趋势正确,但仍存在着一定的差别.对于发射率,Dorigon等(2013 Int. J. Heat Mass Transfer 64 863)和Bordbar等(2014 Combust. Flame 161 2435)的WSGG模型与基准模型符合较好,相对误差小于20%.与离散坐标法结合,本文求解了PH2O/PCO2=1,2时的一维平行平板间辐射换热问题.结果显示,由Dorigon等和Bordbar等的WSGG模型得到的辐射热源和热流密度分布的相对误差均较小(10%左右).Johansson等(2011 Combust. Flame 158 893)和Bordbar等的WSGG模型具有更广的适用范围.
      通信作者: 楚化强, hqchust@163.com;mingyan_gu@qq.com ; 顾明言, hqchust@163.com;mingyan_gu@qq.com
    • 基金项目: 国家自然科学基金(批准号:51676002,51376008,51306001)和安徽省自然科学基金(批准号:1408085QE100)资助的课题.
    [1]

    Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303

    [2]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [3]

    Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]

    [4]

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]

    [5]

    Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]

    [6]

    Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736

    [7]

    Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66

    [8]

    Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20

    [9]

    Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602

    [10]

    Modest M F 1991 J. Heat Transfer 113 650

    [11]

    Soufiani A, Djavdan E 1994 Combust. Flame 97 240

    [12]

    Denison M K, Webb B W 1993 J. Heat Transfer 115 1004

    [13]

    Denison M K, Webb B W 1995 J. Heat Transfer 117 359

    [14]

    Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297

    [15]

    Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699

    [16]

    Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335

    [17]

    Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609

    [18]

    Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228

    [19]

    Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357

    [20]

    Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893

    [21]

    Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275

    [22]

    Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419

    [23]

    Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863

    [24]

    Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435

    [25]

    Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791

    [26]

    Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987

    [27]

    Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349

    [28]

    Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227

    [29]

    Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796

  • [1]

    Modest M F 2013 Radiative Heat Transfer (3rd Ed.) (San Diego: Academic Press) p303

    [2]

    Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 物理学报 60 104702]

    [3]

    Lan L Q, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301 (in Chinese) [蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301]

    [4]

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204 (in Chinese) [张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204]

    [5]

    Wang M R, Cai T D 2015 Acta Phys. Sin. 64 213301 (in Chinese) [王敏锐, 蔡廷栋 2015 物理学报 64 213301]

    [6]

    Chu H Q, Liu F S, Zhou H C 2011 Int. J. Heat Mass Transfer 54 4736

    [7]

    Chu H Q, Liu F S, Zhou H C 2012 Int. J. Therm. Sci. 59 66

    [8]

    Hottel H C, Sarofim A F 1967 Radiative Transfer (New York: McGraw-Hill) p20

    [9]

    Smith T F, Shen Z F, Friedman J N 1982 J. Heat Transfer 104 602

    [10]

    Modest M F 1991 J. Heat Transfer 113 650

    [11]

    Soufiani A, Djavdan E 1994 Combust. Flame 97 240

    [12]

    Denison M K, Webb B W 1993 J. Heat Transfer 115 1004

    [13]

    Denison M K, Webb B W 1995 J. Heat Transfer 117 359

    [14]

    Choi C E, Baek S W 1996 Combust. Sci. Technol. 115 297

    [15]

    Yu M J, Baek S W, Park J H 2000 Int. J. Heat Mass Transfer 43 1699

    [16]

    Riviere P, Soufiani A, Taine J 1995 J. Quant. Spectrosc. Radiat. Transfer 53 335

    [17]

    Pierrot L, Riviere P, Soufiani A, Taine J 1999 J. Quant. Spectrosc. Radiat. Transfer 62 609

    [18]

    Yang S S, Song T H 1999 Int. J. Therm. Sci. 38 228

    [19]

    Liu F, Becker H A, Bindar Y 1998 Int. J. Heat Mass Transfer 41 3357

    [20]

    Johansson R, Leckner B, Andersson K, Johnsson F 2011 Combust. Flame 158 893

    [21]

    Yin C, Johansen L C R, Rosendahl L A, Kr S K 2010 Energy Fuels 24 6275

    [22]

    Kangwanpongpan T, Frana F H R, da Silva R C, Schneider P S, Krautz H J 2012 Int. J. Heat Mass Transfer 55 7419

    [23]

    Dorigon L J, Duciak G, Brittes R, Cassol F, Galarca M, Frana F H R 2013 Int. J. Heat Mass Transfer 64 863

    [24]

    Bordbar M H, Wecel G, Hyppnen T 2014 Combust. Flame 161 2435

    [25]

    Bahador M, Sunden B 2008 ASME Turbo Expo 2008: Power for Land, Sea, and Air Berlin, Germany, June 9-13, 2008 p1791

    [26]

    Soufiani A, Taine J 1997 Int. J. Heat Mass Transfer 40 987

    [27]

    Rivire P, Soufiani A 2012 Int. J. Heat Mass Transfer 55 3349

    [28]

    Liu F, Gulder O L, Smallwood G J 1998 Int. J. Heat Mass Transfer 41 2227

    [29]

    Cassol F, Brittes R, Frana F H R, Ezekoye O A 2014 Int. J. Heat Mass Transfer 79 796

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1411
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-02-24
  • 刊出日期:  2017-05-05

灰气体加权和辐射模型综合评估及分析

    基金项目: 

    国家自然科学基金(批准号:51676002,51376008,51306001)和安徽省自然科学基金(批准号:1408085QE100)资助的课题.

摘要: 在O2/CO2气氛下,参与性介质的非灰气体辐射特性表现出不同于空气气氛下的特性,因此,非灰气体辐射模型的选择和应用在换热过程中将变得十分重要.基于统计窄谱带模型,本文综合评估近年发展应用较广的灰气体加权和(WSGG)模型.结果表明,几种WSGG模型的预测值总体趋势正确,但仍存在着一定的差别.对于发射率,Dorigon等(2013 Int. J. Heat Mass Transfer 64 863)和Bordbar等(2014 Combust. Flame 161 2435)的WSGG模型与基准模型符合较好,相对误差小于20%.与离散坐标法结合,本文求解了PH2O/PCO2=1,2时的一维平行平板间辐射换热问题.结果显示,由Dorigon等和Bordbar等的WSGG模型得到的辐射热源和热流密度分布的相对误差均较小(10%左右).Johansson等(2011 Combust. Flame 158 893)和Bordbar等的WSGG模型具有更广的适用范围.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回