搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维氢原子中的基态奇异特性数值精确对角化法

刘褚航 强百强 季育琛 李炜

二维氢原子中的基态奇异特性数值精确对角化法

刘褚航, 强百强, 季育琛, 李炜
PDF
导出引用
导出核心图
  • 利用数值有限差分法处理二维氢原子的基态波函数时,计算结果发现其存在着数值奇异特性.本文通过构造一套具有正交完备性的离散贝塞尔基函数,并结合基于Lanczos技术的数值精确对角化方法研究二维氢原子中的基态波函数的数值奇异特性,得到的波函数数值解及其相应的本征能量均与解析结果相一致.这套新的完备的离散贝塞尔基函数,可以在研究一些波函数具有数值奇异特性的体系中发挥至关重要的作用.
      通信作者: 李炜, liweiphysics@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11404359)和中国科学院青年创新促进会计划(批准号:2016215)资助的课题.
    [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题. 物理学报, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [2] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [3] 黄春佳, 厉江帆, 贺慧勇. 二维氢原子的双波描述. 物理学报, 2000, 49(4): 615-618. doi: 10.7498/aps.49.615
    [4] 刘宇峰, 曾谨言. 二维与三维氢原子的四类升、降算子. 物理学报, 1997, 46(3): 428-434. doi: 10.7498/aps.46.428
    [5] 林为干. 贝塞尔函数的近似计算在调频制中的应用. 物理学报, 1955, 11(5): 411-420. doi: 10.7498/aps.11.411
    [6] 熊小明. 二维电子气的关联函数. 物理学报, 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [7] 肖利, 雷天宇, 梁禺, 赵敏, 刘慧, 张斯淇, 李宏, 马季, 吴向尧. 二维函数光子晶体. 物理学报, 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [8] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子. 物理学报, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [9] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究. 物理学报, 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [10] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [11] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究. 物理学报, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [12] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法. 物理学报, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [13] 慕青松, 苗天德, 宜晨虹. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [14] 徐强, 孟继德, 包伯成. 二维抛物线离散映射的动力学研究. 物理学报, 2011, 60(1): 010504. doi: 10.7498/aps.60.010504
    [15] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [16] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [17] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [18] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元. 一种含时贝塞尔光束的理论性质研究. 物理学报, 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [19] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [20] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
  • 引用本文:
    Citation:
计量
  • 文章访问数:  845
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-12-05

二维氢原子中的基态奇异特性数值精确对角化法

  • 1. 上海科技大学物质科学与技术学院, 上海 201210;
  • 2. 中国科学院上海微系统与信息技术研究所, 信息功能材料国家重点实验室, 上海 200050
  • 通信作者: 李炜, liweiphysics@gmail.com
    基金项目: 

    国家自然科学基金(批准号:11404359)和中国科学院青年创新促进会计划(批准号:2016215)资助的课题.

摘要: 利用数值有限差分法处理二维氢原子的基态波函数时,计算结果发现其存在着数值奇异特性.本文通过构造一套具有正交完备性的离散贝塞尔基函数,并结合基于Lanczos技术的数值精确对角化方法研究二维氢原子中的基态波函数的数值奇异特性,得到的波函数数值解及其相应的本征能量均与解析结果相一致.这套新的完备的离散贝塞尔基函数,可以在研究一些波函数具有数值奇异特性的体系中发挥至关重要的作用.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回