搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干彩虹的形成机制

孙天娇 钱轩 尚雅轩 刘剑 王开友 姬扬

相干彩虹的形成机制

孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬
PDF
导出引用
导出核心图
  • 用一束白光激光聚焦照射液体(水、丙酮、无水乙醇、汽水等)或固体(冰、有色玻璃、塑料、彩色蜡等),出现了多级的彩色干涉环,即相干彩虹.高强度白光局部地加热了液体(固体),改变了它的密度(以及折射性质),从而导致光程差的出现,不同波长的光都发生干渉,形成了彩色的干涉环.有色玻璃在反射模式下也出现了相干彩虹,此时的干涉完全来自于玻璃表面轮廓的变化,并且无参数拟合的结果定量地符合观测到的干涉图案.
      通信作者: 姬扬, jiyang@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301202)、国家自然科学基金(批准号:11674311,61674146,61774144)、中国科学院战略先导专项(批准号:XDPB06)和王宽诚教育基金会资助的课题.
    [1]

    Born M, Wolf E (translated by Yang J S et al.) 2005 Elements of the Theory of Interference and Interferometers in Principles of Optics (Beijing: Electronics Industry Press) p268 (in Chinese) [玻恩M, 沃耳夫E 著(杨葭荪 等 译) 2005 光学原理: 光的传播、干涉和衍射的电磁理论(上册) (北京:电子工业出版社) 第268页]

    [2]

    Durbin S D, Arakelian S M, Shen Y R 1981 Opt. Lett. 6 411

    [3]

    He K X, Abeleldayem H, Sekhar P C, Venkateswarlu P, George M C 1991 Opt. Commun. 81 101

    [4]

    Sarkisov S S, Curley M J, Fields A 2003 Proc. SPIE 5212 193

    [5]

    Mathews S J, Kumar S C, Giribabu L, Rao S V 2007 Opt. Commun. 280 206

    [6]

    Karimzadeh R 2012 J. Opt. 14 095701

    [7]

    Pu S L, Yao L F, Guan F F, Liu M 2009 Opt. Coummun. 282 908

    [8]

    Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159

    [9]

    Shi B X, Miao L L, Wang Q K, Du J, Tang P H, Liu J, Zhao C J, Wen S C 2015 Appl. Phys. Lett. 107 151101

    [10]

    Wu Y L, Wu Q, Sun F, Cheng C, Meng S, Zhao J M 2015 Proc. Natl. Acad. Sci. USA 112 11800

    [11]

    Zhang J D, Yu X F, Han W J, L B S, Li X H, Xiao S, Gao Y L, He J 2016 Opt. Lett. 41 1704

    [12]

    Li X H, Liu R K, Xie H H, Zhang Y, L B S, Wang P, Wang J H, Fan Q, Ma Y, Tao S H, Xiao S, Yu X F, Gao Y L, He J 2017 Opt. Express 25 18346

    [13]

    Wang Y N, Tang Y J, Cheng P H, Zhou X F, Zhu Z, Liu Z P, Liu D, Wang Z M, Bao J M 2017 Nanoscale 9 3547

    [14]

    Wu L M, Xie Z J, Lu L, Zhao J L, Wang Y Z, Jiang X T, Ge Y Q, Zhang F, Lu S B, Guo Z N, Liu J, Xiang Y J, Xu S X, Li J Q, Fan D Y, Zhang H 2018 Adv. Opt. Mater. 6 1700985

    [15]

    Wang X, Yan Y F, Cheng H, Wang Y H, Han J B 2018 Mater. Lett. 214 247

    [16]

    Kadhum A J, Hussein N A, Hassan Q M A, Sultan H A, Al-Asadi A S, Emshary C A 2018 Optik 157 540

    [17]

    Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y L, He J 2018 Opt. Lett. 43 523

    [18]

    Zhang Q, Cheng X M, He B, Ren Z Y, Zhang Y, Chen H W, Bai J T 2018 Opt. Laser Technol. 102 140

    [19]

    Du W C, Liu S H 1993 Opt. Commun. 98 117

    [20]

    Yang X Q, Qi S W, Chen K, Zhang C P, Tian J G, Wu Q 2005 Opt. Mater. 27 1358

    [21]

    al-Ahmad A Y, al-Mudhaffer M F, Badran H A, Emshary C A 2013 Opt. Laser Technol. 54 72

    [22]

    Sun T J, Shang Y X, Qian X, Ji Y 2018 Acta Phys. Sin. 67 034205 (in Chinese) [孙天娇, 尚雅轩, 钱轩, 姬扬 2018 物理学报 67 034205]

    [23]

    Sun T J, Qian X, Shang Y X, Liu J, Wang K Y, Ji Y 2018 Sci. Bull. 63 531

    [24]

    Karimzadeh R 2013 Opt. Commun. 286 329

  • [1]

    Born M, Wolf E (translated by Yang J S et al.) 2005 Elements of the Theory of Interference and Interferometers in Principles of Optics (Beijing: Electronics Industry Press) p268 (in Chinese) [玻恩M, 沃耳夫E 著(杨葭荪 等 译) 2005 光学原理: 光的传播、干涉和衍射的电磁理论(上册) (北京:电子工业出版社) 第268页]

    [2]

    Durbin S D, Arakelian S M, Shen Y R 1981 Opt. Lett. 6 411

    [3]

    He K X, Abeleldayem H, Sekhar P C, Venkateswarlu P, George M C 1991 Opt. Commun. 81 101

    [4]

    Sarkisov S S, Curley M J, Fields A 2003 Proc. SPIE 5212 193

    [5]

    Mathews S J, Kumar S C, Giribabu L, Rao S V 2007 Opt. Commun. 280 206

    [6]

    Karimzadeh R 2012 J. Opt. 14 095701

    [7]

    Pu S L, Yao L F, Guan F F, Liu M 2009 Opt. Coummun. 282 908

    [8]

    Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159

    [9]

    Shi B X, Miao L L, Wang Q K, Du J, Tang P H, Liu J, Zhao C J, Wen S C 2015 Appl. Phys. Lett. 107 151101

    [10]

    Wu Y L, Wu Q, Sun F, Cheng C, Meng S, Zhao J M 2015 Proc. Natl. Acad. Sci. USA 112 11800

    [11]

    Zhang J D, Yu X F, Han W J, L B S, Li X H, Xiao S, Gao Y L, He J 2016 Opt. Lett. 41 1704

    [12]

    Li X H, Liu R K, Xie H H, Zhang Y, L B S, Wang P, Wang J H, Fan Q, Ma Y, Tao S H, Xiao S, Yu X F, Gao Y L, He J 2017 Opt. Express 25 18346

    [13]

    Wang Y N, Tang Y J, Cheng P H, Zhou X F, Zhu Z, Liu Z P, Liu D, Wang Z M, Bao J M 2017 Nanoscale 9 3547

    [14]

    Wu L M, Xie Z J, Lu L, Zhao J L, Wang Y Z, Jiang X T, Ge Y Q, Zhang F, Lu S B, Guo Z N, Liu J, Xiang Y J, Xu S X, Li J Q, Fan D Y, Zhang H 2018 Adv. Opt. Mater. 6 1700985

    [15]

    Wang X, Yan Y F, Cheng H, Wang Y H, Han J B 2018 Mater. Lett. 214 247

    [16]

    Kadhum A J, Hussein N A, Hassan Q M A, Sultan H A, Al-Asadi A S, Emshary C A 2018 Optik 157 540

    [17]

    Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y L, He J 2018 Opt. Lett. 43 523

    [18]

    Zhang Q, Cheng X M, He B, Ren Z Y, Zhang Y, Chen H W, Bai J T 2018 Opt. Laser Technol. 102 140

    [19]

    Du W C, Liu S H 1993 Opt. Commun. 98 117

    [20]

    Yang X Q, Qi S W, Chen K, Zhang C P, Tian J G, Wu Q 2005 Opt. Mater. 27 1358

    [21]

    al-Ahmad A Y, al-Mudhaffer M F, Badran H A, Emshary C A 2013 Opt. Laser Technol. 54 72

    [22]

    Sun T J, Shang Y X, Qian X, Ji Y 2018 Acta Phys. Sin. 67 034205 (in Chinese) [孙天娇, 尚雅轩, 钱轩, 姬扬 2018 物理学报 67 034205]

    [23]

    Sun T J, Qian X, Shang Y X, Liu J, Wang K Y, Ji Y 2018 Sci. Bull. 63 531

    [24]

    Karimzadeh R 2013 Opt. Commun. 286 329

  • [1] 郭 弘, 吴国华, 邓冬梅, 刘时雄, 刘明伟. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [2] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [3] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [4] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [5] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [6] 孙天娇, 尚雅轩, 钱轩, 姬扬. 清水出彩虹. 物理学报, 2018, 67(3): 034205. doi: 10.7498/aps.67.20172663
    [7] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器. 物理学报, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [8] 田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉. 高效外腔倍频产生426 nm激光的实验研究. 物理学报, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [9] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [10] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [11] 孙秀冬, 裴延波, 任常愚. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [12] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [13] 乔耀军, 韩庆生, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [14] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [15] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
    [16] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [17] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管. 物理学报, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [18] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [19] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [20] 屠锦洪, 詹黎. 部分相干光照明下旋转双光栅衍射干涉效应. 物理学报, 1991, 40(9): 1424-1424. doi: 10.7498/aps.40.1424
  • 引用本文:
    Citation:
计量
  • 文章访问数:  674
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-07-05
  • 刊出日期:  2019-09-20

相干彩虹的形成机制

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083;
  • 2. 中国科学院大学, 材料科学与光电技术学院, 物理科学学院, 北京 100049
  • 通信作者: 姬扬, jiyang@semi.ac.cn
    基金项目: 

    国家重点研发计划(批准号:2016YFA0301202)、国家自然科学基金(批准号:11674311,61674146,61774144)、中国科学院战略先导专项(批准号:XDPB06)和王宽诚教育基金会资助的课题.

摘要: 用一束白光激光聚焦照射液体(水、丙酮、无水乙醇、汽水等)或固体(冰、有色玻璃、塑料、彩色蜡等),出现了多级的彩色干涉环,即相干彩虹.高强度白光局部地加热了液体(固体),改变了它的密度(以及折射性质),从而导致光程差的出现,不同波长的光都发生干渉,形成了彩色的干涉环.有色玻璃在反射模式下也出现了相干彩虹,此时的干涉完全来自于玻璃表面轮廓的变化,并且无参数拟合的结果定量地符合观测到的干涉图案.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回