搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微穿孔蜂窝-波纹复合声学超材料吸声行为

张丰辉 唐宇帆 辛锋先 卢天健

微穿孔蜂窝-波纹复合声学超材料吸声行为

张丰辉, 唐宇帆, 辛锋先, 卢天健
PDF
导出引用
导出核心图
  • 民用及国防工业领域对工程材料结构提出了更高的应用需求.单一材料结构越来越难以满足实际应用需求,通过人工复合结构实现超常单一及多物理性能的超材料设计已经成为材料结构应用的重要发展方向.本文基于传统的蜂窝夹层结构,在其内部引入波纹结构,并在面板和波纹上分别进行微穿孔形成微穿孔蜂窝-波纹复合声学超材料,在其优异力学承载基础上,实现了低频段的宽频有效吸声降噪.应用微穿孔板吸声理论和声阻抗串并联理论,建立了微穿孔蜂窝-波纹复合声学超材料的吸声理论模型;发展了考虑黏热效应的声传播有限元模型,通过数值模拟验证了理论模型的准确性,并数值计算了声波在超材料微结构内的黏热能量耗散分布,发现超材料能量耗散主要集中于微穿孔处的黏性边界层;进一步开展了超材料吸声参数和尺度设计参数的分析讨论,阐明了不同尺度设计参数对超材料吸声性能的影响规律.本文工作对兼具力学承载与吸声降噪的新型材料结构设计有重要的理论指导价值.
    • 基金项目: 国家自然科学基金(批准号:11761131003,U1737107,11772248)和陕西省留学人员科技活动择优资助项目(批准号:2017025)资助的课题.
    [1]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [2]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [3]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 788

    [4]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447

    [5]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [6]

    Duan Y, Luo J, Wang G, Hang Z H, Hou B, Li J, Sheng P, Lai Y 2015 Sci. Rep. 5 12139

    [7]

    Christensen J, Romero-Garcia V, Pico R, Cebrecos A, Garcia de Abajo F J, Mortensen N A, Willatzen M, Sanchez-Morcillo V J 2014 Sci. Rep. 4 4674

    [8]

    Christensen J, Willatzen M 2014 Appl. Phys. Lett. 105 043508

    [9]

    D'Aguanno G, Le K Q, Trimm R, Alu A, Mattiucci N, Mathias A D, Akoezbek N, Bloemer M J 2012 Sci. Rep. 2 340

    [10]

    Fan L, Chen Z, Zhang S Y, Ding J, Li X J, Zhang H 2015 Appl. Phys. Lett. 106 151908

    [11]

    Song K, Lee S H, Kim K, Hur S, Kim J 2014 Sci. Rep. 4 4165

    [12]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509

    [13]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756

    [14]

    Wang W B, Zhang Z J, Zhang Q C, Jin F, Lu T J 2016 Theor. Appl. Mech. Lett. 6 54

    [15]

    Han B, Qin K, Yu B, Wang B, Zhang Q, Lu T J 2016 Mater. Des. 93 271

    [16]

    Sakagami K, Nakamori T, Morimoto M, Yairi M 2009 Appl. Acoust. 70 703

    [17]

    Guo W, Min H 2015 Energy Procedia 78 1617

    [18]

    Wang C, Huang L 2011 J. Acoust. Soc. Am. 130 208

    [19]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109

    [20]

    Tang Y F, Li F H, Xin F X, Lu T J 2017 Mater. Des. 134 502

    [21]

    Maa D Y 1998 J. Acoust. Soc. Am. 104 2861

    [22]

    Zhou H A, Wang X M, Mei Y L 2014 Acta Mech. Sin. 30 714

    [23]

    Ruiz H, Cobo P, Jacobsen F 2011 Appl. Acoust. 72 772

    [24]

    Brekhovskikh L M 1980 Waves in Layered Media, 2nd Edition (New York: Academic Press) pp76-81

    [25]

    Tang Y F, Ren S W, Meng H, Xin F X, Huang L, Chen T, Zhang C, Lu T J 2017 Sci. Rep. 7 43340

  • [1]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [2]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [3]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 788

    [4]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447

    [5]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [6]

    Duan Y, Luo J, Wang G, Hang Z H, Hou B, Li J, Sheng P, Lai Y 2015 Sci. Rep. 5 12139

    [7]

    Christensen J, Romero-Garcia V, Pico R, Cebrecos A, Garcia de Abajo F J, Mortensen N A, Willatzen M, Sanchez-Morcillo V J 2014 Sci. Rep. 4 4674

    [8]

    Christensen J, Willatzen M 2014 Appl. Phys. Lett. 105 043508

    [9]

    D'Aguanno G, Le K Q, Trimm R, Alu A, Mattiucci N, Mathias A D, Akoezbek N, Bloemer M J 2012 Sci. Rep. 2 340

    [10]

    Fan L, Chen Z, Zhang S Y, Ding J, Li X J, Zhang H 2015 Appl. Phys. Lett. 106 151908

    [11]

    Song K, Lee S H, Kim K, Hur S, Kim J 2014 Sci. Rep. 4 4165

    [12]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509

    [13]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756

    [14]

    Wang W B, Zhang Z J, Zhang Q C, Jin F, Lu T J 2016 Theor. Appl. Mech. Lett. 6 54

    [15]

    Han B, Qin K, Yu B, Wang B, Zhang Q, Lu T J 2016 Mater. Des. 93 271

    [16]

    Sakagami K, Nakamori T, Morimoto M, Yairi M 2009 Appl. Acoust. 70 703

    [17]

    Guo W, Min H 2015 Energy Procedia 78 1617

    [18]

    Wang C, Huang L 2011 J. Acoust. Soc. Am. 130 208

    [19]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109

    [20]

    Tang Y F, Li F H, Xin F X, Lu T J 2017 Mater. Des. 134 502

    [21]

    Maa D Y 1998 J. Acoust. Soc. Am. 104 2861

    [22]

    Zhou H A, Wang X M, Mei Y L 2014 Acta Mech. Sin. 30 714

    [23]

    Ruiz H, Cobo P, Jacobsen F 2011 Appl. Acoust. 72 772

    [24]

    Brekhovskikh L M 1980 Waves in Layered Media, 2nd Edition (New York: Academic Press) pp76-81

    [25]

    Tang Y F, Ren S W, Meng H, Xin F X, Huang L, Chen T, Zhang C, Lu T J 2017 Sci. Rep. 7 43340

  • [1] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [2] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究. 物理学报, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [3] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [4] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [5] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [6] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控. 物理学报, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [7] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [8] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [9] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案. 物理学报, 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [10] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
  • 引用本文:
    Citation:
计量
  • 文章访问数:  109
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-08-27

微穿孔蜂窝-波纹复合声学超材料吸声行为

  • 1. 西安交通大学, 机械结构强度与振动国家重点实验室, 西安 710049;
  • 2. 西安交通大学, 多功能材料与结构教育部重点实验室, 西安 710049;
  • 3. 南京航空航天大学, 机械结构力学及控制国家重点实验室, 南京 210016
    基金项目: 

    国家自然科学基金(批准号:11761131003,U1737107,11772248)和陕西省留学人员科技活动择优资助项目(批准号:2017025)资助的课题.

摘要: 民用及国防工业领域对工程材料结构提出了更高的应用需求.单一材料结构越来越难以满足实际应用需求,通过人工复合结构实现超常单一及多物理性能的超材料设计已经成为材料结构应用的重要发展方向.本文基于传统的蜂窝夹层结构,在其内部引入波纹结构,并在面板和波纹上分别进行微穿孔形成微穿孔蜂窝-波纹复合声学超材料,在其优异力学承载基础上,实现了低频段的宽频有效吸声降噪.应用微穿孔板吸声理论和声阻抗串并联理论,建立了微穿孔蜂窝-波纹复合声学超材料的吸声理论模型;发展了考虑黏热效应的声传播有限元模型,通过数值模拟验证了理论模型的准确性,并数值计算了声波在超材料微结构内的黏热能量耗散分布,发现超材料能量耗散主要集中于微穿孔处的黏性边界层;进一步开展了超材料吸声参数和尺度设计参数的分析讨论,阐明了不同尺度设计参数对超材料吸声性能的影响规律.本文工作对兼具力学承载与吸声降噪的新型材料结构设计有重要的理论指导价值.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回