搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国空间站冷原子光钟激光系统

刘云 王文海 贺德晶 周勇壮 沈咏 邹宏新

引用本文:
Citation:

中国空间站冷原子光钟激光系统

刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新

Laser system of cold atom optical clock in China Space Station

Liu Yun, Wang Wen-Hai, He De-Jing, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin
PDF
HTML
导出引用
  • 中国研制的世界首台空间冷原子光钟于2022年10月31日随“梦天”实验舱成功发射, 进入中国空间站. 紧凑稳定的激光系统是实现光钟空间应用的关键环节. 本课题组提出类同步调谐方案, 研制了高性能外腔半导体激光器, 能同时满足空间光钟对激光器调谐范围、线宽和力学热学稳定性的要求. 采用注入锁定和锥形放大器进行激光功率放大, 满足了空间光钟对激光功率的要求. 本文简要介绍了空间冷原子光钟的系统构成、激光器方案和电控系统, 并对光钟激光系统面临的问题和发展方向进行了总结和展望.
    The world's first space optical clock (SOC) developed in China, which is composed of five subsystems, i.e. an optical unit, a physics unit, an electronic control unit, a space optical frequency comb, and an ultrastable laser, was successfully launched with the Mengtian space laboratory on October 31, 2022, and entered into the China Space Station (CSS). Compact and stable laser is a key element for the operation of the SOC. The optical unit consists of 5 lasers with wavelengths of 461, 679, 689, 707 and 813 nm, respectively. With a synchronous-tuning-like scheme, high-quality external cavity diode lasers (ECDLs) are developed as the seeds. The linewidths of the lasers are all reduced to approximately 100 kHz, and their tuning ranges, free from mode hopping, are capable of reaching 20 GHz, satisfying the requirements for the SOC. With careful mechanical and thermal design, the stability of the laser against vibration and temperature fluctuation is sufficiently promoted to confront the challenge of rocket launching. While the power from the ECDL is sufficient for 679-nm repump laser and 707-nm repump laser, additional injection lock is utilized for the 461-nm laser and 689-nm laser to amplify the power of the seeds to more than 600 mW, so that effective first and second stage Doppler cooling can be achieved. To generate an optical lattice with deep enough potential well, over 800-mW 813-nm lasers are required. Therefore, a semiconductor tapered amplifier is adopted to amplify the seed to more than 2 W, so as to cope with various losses of the coupling optics. The wavelengths and output power values of the 5 lasers are monitored and feedback is controlled by the electronic control unit. All the modules are designed and prepared as orbital replaceable units, which can be easily replaced by astronauts in case failure occurs. Now the lasers are all turned on and operate normally in CSS. More data of the SOC will be obtained in the near future. At present stage, according to our evaluation, the continuous operation time of the SOC is limited by the injection locked lasers, which are relatively vulnerable to mode hopping. Hopefully, this problem can be solved by improving the laser diode preparing technology, or developing fiber lasers with compact frequency conversion modules.
      通信作者: 邹宏新, hxzou@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62105368, 62275268)资助的课题.
      Corresponding author: Zou Hong-Xin, hxzou@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105368, 62275268).
    [1]

    Mallette L A, White J, Rochat P 2010 IEEE/ION Position, Location and Navigation Symposium Indian Wells, CA, USA, May 4–6, 2010 p11414524

    [2]

    Batori E, Almat N, Affolderbach C, Mileti G 2021 Adv. Space Res. 68 4723Google Scholar

    [3]

    Thornton C L, Border J S 2003 Radiometric Tracking Techniques for Deep-Space Navigation (New York: Wiley-Interscience) pp28–31

    [4]

    Wolf P, Blanchet L 2016 Classical Quantum Gravity 33 035012Google Scholar

    [5]

    Liu, L, Lyu D S, Chen W B, Li T, Qu Q Z, W B, Li L, Ren W Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [6]

    Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T, Ely T A 2021 Nature 595 43

    [7]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck , Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 European Frequency and Time Forum, Gothenburg, Sweden, April 23–27, 2012, p412

    [8]

    Bongs K, Singh, Smith L, He W, Kock O, Swierad D, Hughes J, Schiller S, Alighanbari S, Origlia S, Vogt S, Sterr O, Lisdat C, Le Targat R, Lodewyck J, Holleville D, Venon B, Bize S, Barwood G P, Gill P, Hill I R, Ovchinnikov Y B, Poli N , Tino G M , Stuhler J , Kaenders W 2015 C. R. Phys. 16 553

    [9]

    Khabarova K, Kryuchkov D, Borisenko A, Zalivako I, Semerikov I, Aksenov M, Sherstov I, Abbasov T, Tausenev A, Kolachevsky N 2022 Symmetry 14 2213Google Scholar

    [10]

    Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, Moriya N, Kamiya N, Fujii K, Muramatsu R, Shiimado T, Katori H 2021 Adv. Quantum Technol. 4 2100015Google Scholar

    [11]

    赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏 2018 物理学报 67 050601Google Scholar

    Zhao F J, Gao F, Han J X, Zhou C H, Meng J W, Wang Y B, Guo Y, Zhang S G, Chang H 2018 Acta Phys. Sin. 67 050601Google Scholar

    [12]

    Krebs D J, Novo-Gradac A M, Li S X, Lindauer S J, Afzal R S, Yu A W 2005 Appl. Opt. 44 1715Google Scholar

    [13]

    Yu A W, Krainak M A, Stephen M A, Chen J R, Coyle B, Numata K, Camp J B, Abshire J B, Allan G R, Li S X, Riris H 2012 Fiber Lasers IX: Technology, Systems, and Applications, San Francisco, California, United States, February 15, 2012 p823713

    [14]

    Lévèque T, Faure B, Esnault F, Delaroche C, Massonnet D, Grosjean O, Buffe F, Torresi P, Bomer T, Pichon A, Béraud P, Lelay J, Thomin S, Laurent P 2015 Rev. Sci. Instrum. 86 033104Google Scholar

    [15]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T, Holzwarth R 2016 Optica 3 1381

    [16]

    Dinkelaker A N, Schiemangk M, Schkolnik V, Kenyon A, Lampmann K, Wenzlawski A, Windpassinger P, Hellmig O, Wendrich T, Rasel E M, Giunta M, Deutsch C, Kürbis C, Smol R, Wicht A, Krutzik M, Peters A 2017 Appl. Opt. 56 1388Google Scholar

    [17]

    Schwarz R, Dorscher S, Al-Masoudi A, Vogt S, Li Y, Lisdat C 2019 Rev. Sci. Instrum. 90 023109Google Scholar

    [18]

    Sottile A, Damiano E, Di Lieto A, Tonelli M 2019 Opt. Lett. 44 594Google Scholar

    [19]

    Meng L Q, Zhao P Y, Meng F C, Long Chen, Xie Y, Wang Y K, Bian W, Jia J J, Liu T, Zhang S G, Wang J Y 2022 Chin. Opt. Lett. 20 021407Google Scholar

    [20]

    邹宏新, 王文海, 詹子豪 2021 国专利 ZL 202110005798.9 [2021-01-05]

    Zou H X, Wang W H, Zhan Z H 2021 CN Patent ZL 202110005798.9 [2021-01-05

    [21]

    邹宏新, 詹子豪, 王文海 2021 中国专利 ZL 202110005871.2 [2021-01-05]

    Zou H X, Zhan Z H, Wang W H 2021 CN Patent ZL 202110005871.9 [2021-01-05

    [22]

    Shaffer M K, Ranjit G, Sukenik C I 2008 Rev. Sci. Instrum. 79 046102

    [23]

    Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021 AIP Adv. 11 125116

  • 图 1  Sr原子空间光钟系统方框图

    Fig. 1.  Schematic of Sr atom space optical clock system.

    图 2  Sr原子光钟系统所需6种不同波长激光

    Fig. 2.  Lasers at six wavelengths in Sr atom optical clock system.

    图 3  Littman结构类同步调谐ECDL结构图

    Fig. 3.  Exploded view of Littman-configuration ECDL with synchronous-tuning-like scheme.

    图 4  Littman结构光栅ECDL的工作原理图(P, 压电陶瓷作用点; θ, 光栅入射角; φ, 光栅一级衍射角; R, 理想旋转半径; L2, 实际旋转半径; h, 调谐点与Y轴的垂直距离; Q, 调谐支点)

    Fig. 4.  Functional schematic of Littman-configuration ECDL. (P, PZT action point; θ, grating incident angle; φ, first order diffraction angle of grating; R, ideal rotation radius; L2, actual rotation radius; h, the distance between the pivot point and the Y coordinate axis; Q, pivot point)

    图 5  种子激光器结构装配图

    Fig. 5.  Assembly view of seed laser.

    图 6  注入激光器结构装配图

    Fig. 6.  Assembly view of injection locked laser.

    图 7  TA放大器结构装配图

    Fig. 7.  Assembly view of tapered amplifier.

    图 8  激光系统实物图

    Fig. 8.  Pictures of laser system.

    图 9  689 nm激光器拍频锁定前后频谱图

    Fig. 9.  Beating signals of 689 nm lasers before (left) and after (right) frequency offset locking.

    图 10  空间光钟电控系统方框图

    Fig. 10.  Schematic of electronic control unit of space optical clock.

    图 11  光钟电控单元(左)和主要控制电路(右)实物图

    Fig. 11.  Pictures of electronic control unit (left) and main control modules (right).

  • [1]

    Mallette L A, White J, Rochat P 2010 IEEE/ION Position, Location and Navigation Symposium Indian Wells, CA, USA, May 4–6, 2010 p11414524

    [2]

    Batori E, Almat N, Affolderbach C, Mileti G 2021 Adv. Space Res. 68 4723Google Scholar

    [3]

    Thornton C L, Border J S 2003 Radiometric Tracking Techniques for Deep-Space Navigation (New York: Wiley-Interscience) pp28–31

    [4]

    Wolf P, Blanchet L 2016 Classical Quantum Gravity 33 035012Google Scholar

    [5]

    Liu, L, Lyu D S, Chen W B, Li T, Qu Q Z, W B, Li L, Ren W Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [6]

    Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T, Ely T A 2021 Nature 595 43

    [7]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck , Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 European Frequency and Time Forum, Gothenburg, Sweden, April 23–27, 2012, p412

    [8]

    Bongs K, Singh, Smith L, He W, Kock O, Swierad D, Hughes J, Schiller S, Alighanbari S, Origlia S, Vogt S, Sterr O, Lisdat C, Le Targat R, Lodewyck J, Holleville D, Venon B, Bize S, Barwood G P, Gill P, Hill I R, Ovchinnikov Y B, Poli N , Tino G M , Stuhler J , Kaenders W 2015 C. R. Phys. 16 553

    [9]

    Khabarova K, Kryuchkov D, Borisenko A, Zalivako I, Semerikov I, Aksenov M, Sherstov I, Abbasov T, Tausenev A, Kolachevsky N 2022 Symmetry 14 2213Google Scholar

    [10]

    Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, Moriya N, Kamiya N, Fujii K, Muramatsu R, Shiimado T, Katori H 2021 Adv. Quantum Technol. 4 2100015Google Scholar

    [11]

    赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏 2018 物理学报 67 050601Google Scholar

    Zhao F J, Gao F, Han J X, Zhou C H, Meng J W, Wang Y B, Guo Y, Zhang S G, Chang H 2018 Acta Phys. Sin. 67 050601Google Scholar

    [12]

    Krebs D J, Novo-Gradac A M, Li S X, Lindauer S J, Afzal R S, Yu A W 2005 Appl. Opt. 44 1715Google Scholar

    [13]

    Yu A W, Krainak M A, Stephen M A, Chen J R, Coyle B, Numata K, Camp J B, Abshire J B, Allan G R, Li S X, Riris H 2012 Fiber Lasers IX: Technology, Systems, and Applications, San Francisco, California, United States, February 15, 2012 p823713

    [14]

    Lévèque T, Faure B, Esnault F, Delaroche C, Massonnet D, Grosjean O, Buffe F, Torresi P, Bomer T, Pichon A, Béraud P, Lelay J, Thomin S, Laurent P 2015 Rev. Sci. Instrum. 86 033104Google Scholar

    [15]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T, Holzwarth R 2016 Optica 3 1381

    [16]

    Dinkelaker A N, Schiemangk M, Schkolnik V, Kenyon A, Lampmann K, Wenzlawski A, Windpassinger P, Hellmig O, Wendrich T, Rasel E M, Giunta M, Deutsch C, Kürbis C, Smol R, Wicht A, Krutzik M, Peters A 2017 Appl. Opt. 56 1388Google Scholar

    [17]

    Schwarz R, Dorscher S, Al-Masoudi A, Vogt S, Li Y, Lisdat C 2019 Rev. Sci. Instrum. 90 023109Google Scholar

    [18]

    Sottile A, Damiano E, Di Lieto A, Tonelli M 2019 Opt. Lett. 44 594Google Scholar

    [19]

    Meng L Q, Zhao P Y, Meng F C, Long Chen, Xie Y, Wang Y K, Bian W, Jia J J, Liu T, Zhang S G, Wang J Y 2022 Chin. Opt. Lett. 20 021407Google Scholar

    [20]

    邹宏新, 王文海, 詹子豪 2021 国专利 ZL 202110005798.9 [2021-01-05]

    Zou H X, Wang W H, Zhan Z H 2021 CN Patent ZL 202110005798.9 [2021-01-05

    [21]

    邹宏新, 詹子豪, 王文海 2021 中国专利 ZL 202110005871.2 [2021-01-05]

    Zou H X, Zhan Z H, Wang W H 2021 CN Patent ZL 202110005871.9 [2021-01-05

    [22]

    Shaffer M K, Ranjit G, Sukenik C I 2008 Rev. Sci. Instrum. 79 046102

    [23]

    Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021 AIP Adv. 11 125116

  • [1] 廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤. 光晶格作用下里德伯冷原子系统中的二维空间光孤子. 物理学报, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [2] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [3] 刘超, 张爱兵, 孙越强, 孔令高, 王文静, 关燚炳, 王永松, 郑香脂, 田峥, 高俊. 空间站问天舱等离子体原位成像探测技术. 物理学报, 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [4] 李大为, 王韬, 尹晓蕾, 李佳美, 王利, 张腾, 张天雄, 崔勇, 卢兴强, 王丽, 张杰, 徐光. 皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析. 物理学报, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
    [5] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [6] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [7] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [8] 王进, 魏正军, 王赓, 郭莉, 王金东, 张智明, 郭健平, 郭邦红, 刘颂豪. 数字平均对红外单光子探测器中温度控制系统信噪改善比的影响. 物理学报, 2013, 62(1): 014203. doi: 10.7498/aps.62.014203
    [9] 郭友明, 马晓燠, 饶长辉. 自适应光学控制系统对Kolmogorov湍流补偿的修正有效带宽. 物理学报, 2013, 62(13): 134207. doi: 10.7498/aps.62.134207
    [10] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [11] 杨明, 李香莲, 吴大进. 单模激光系统随机共振的模拟研究. 物理学报, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [12] 韩建, 巴音贺希格, 李文昊. 全息光栅曝光系统中空间滤波器孔径与激光束腰关系的选择方法. 物理学报, 2012, 61(8): 084202. doi: 10.7498/aps.61.084202
    [13] 林宏奂, 蒋东镔, 王建军, 李明中, 张锐, 邓颖, 许党朋, 党钊. 用于神光Ⅲ原型装置精密物理实验的时标激光系统. 物理学报, 2011, 60(2): 025208. doi: 10.7498/aps.60.025208
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] 刘兰琴, 莫磊, 罗斌, 粟敬钦, 王文义, 王方, 景峰, 魏晓峰. 混合加宽的宽带钕玻璃激光系统的放大特性研究. 物理学报, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [16] 王洪坡, 李 杰. 一类非自治位置时滞反馈控制系统的亚谐共振响应. 物理学报, 2007, 56(5): 2504-2516. doi: 10.7498/aps.56.2504
    [17] 卫 栋, 陈海霞, 熊德智, 张 靖. 40K-87Rb原子冷却的半导体激光系统. 物理学报, 2006, 55(12): 6342-6346. doi: 10.7498/aps.55.6342
    [18] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [19] 樊锡君, 田淑芬, 李 健, 刘 杰, 白成杰. 开放的无粒子数反转激光系统中原子响应的时间演化和光放大机制. 物理学报, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [20] 王桂英, 赵九源, 张明科, 范滇元, 崔志光. 钕玻璃高功率激光系统中的空间滤波器的基本研究. 物理学报, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
计量
  • 文章访问数:  3029
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-18
  • 修回日期:  2023-04-26
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-09-20

/

返回文章
返回