搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能

羊美丽 邹丽 程佳杰 王佳明 江钰帆 郝会颖 邢杰 刘昊 樊振军 董敬敬

引用本文:
Citation:

聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能

羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬

Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive

Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing
PDF
HTML
导出引用
  • 全无机CsPbBr3钙钛矿太阳能电池因其优良的特性而受到广泛关注, 但是钙钛矿层具有带隙宽、结晶性较差、表面缺陷较多和水分稳定性差等缺点, 严重制约了全无机CsPbBr3钙钛矿太阳能电池性能的提高和商业化发展. 本文以无空穴传输层的碳基CsPbBr3钙钛矿太阳能电池作为控制组, 在PbBr2前躯液中引入具有丰富疏水F离子的聚偏氟乙烯(polyvinylidene fluoride, PVDF)作为添加剂, 调节CsPbBr3钙钛矿薄膜的生长过程, 改善晶体结构和薄膜形态, 降低缺陷密度及非辐射复合几率. 结果表明, PVDF处理后钙钛矿器件的光伏性能得到了显著改善, 光电转换效率提高至8.17%. 并且在无封装条件下保存1400 h后, 光电转换效率仍可保持90%以上. 这表明适量添加PVDF可以有效提高CsPbBr3薄膜质量及器件性能. 本工作对进一步拓展CsPbBr3钙钛矿太阳能电池的优化设计思路具有重要意义.
    Recently, the power conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells has been enhanced rapidly from 3.8% to 25.8%, which is a top research topic in the field of photovoltaic power generation. However, the preparation of the hybrid perovskite solar cells has high environmental requirements, and the absorber layer is easily caused by the environmental influence and decomposition, resulting in the degradation of device performance. The all-inorganic CsPbBr3 perovskite material has good stability, can be prepared directly in air, and is more economical, showing great potential applications. However, the PCE of all-inorganic CsPbBr3 perovskite solar cells is not high, and at this stage, there is still much room for exploring high-quality controllable preparation of CsPbBr3 films. In this paper, we aim to prepare efficient and stable CsPbBr3 perovskite solar cells with additive engineering.Polymer is one of the most effective additives in perovskite solar cells. The use of polymer additive in perovskite layer can improve the shape-form, structure, and band gap of the film, thus improving the quality of perovskite film. Polyvinylidene fluoride (PVDF) is a cheap polymer with hydrophobic F ions and long flexible polymer chains, and can be used to prepare efficient and stable perovskite solar cells.In this paper, CsPbBr3 perovskite films are prepared by multi-part spin-coating method. PVDF with enriched hydrophobic F is added into the PbBr2 precursor solution as an additive to adjust the crystalline quality of the perovskite film, and the effects of PVDF on the growth process and device performance of the perovskite film are systematically studied. The results show that the PVDF can be used as a template to promote the growth of perovskite crystals, improve the crystal structure and film shape, thus reducing the defect density and charge recombination, and increasing the PCE of the device to 8.17%. The original efficiency of more than 90% can be maintained after 1400 h of storage under unencapsulated condition. Finally, high-efficiency, stable and low-cost CsPbBr3 perovskite solar cells are obtained, which is important in further expanding the optimized design ideas of CsPbBr3 perovskite solar cells. The PVDF can form hydrogen bonds with perovskite or interact with lead ions to improve the structural stability of perovskite, and the F ions in PVDF can improve the moisture stability of perovskite layers.
      通信作者: 董敬敬, jjdong@cugb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11404293)和中央高校基本科研业务费专项资金(批准号: 2652019121)资助的课题.
      Corresponding author: Dong Jing-Jing, jjdong@cugb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404293) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2652019121).
    [1]

    Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [2]

    Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar

    [3]

    Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar

    [4]

    Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar

    [5]

    Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar

    [8]

    Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar

    [9]

    Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar

    [10]

    Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar

    [11]

    Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar

    [12]

    Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar

    [13]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar

    [14]

    Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar

    [16]

    Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar

    [17]

    Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar

    [18]

    Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar

    [19]

    Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar

    [20]

    Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar

    [21]

    Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar

    [22]

    Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar

    [23]

    Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar

    [24]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar

    [25]

    Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar

    [26]

    Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar

    [27]

    Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar

    [28]

    Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar

    [29]

    Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar

    [30]

    Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar

    [31]

    Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar

    [32]

    Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [33]

    Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar

    [34]

    Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar

    [35]

    Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar

    [36]

    Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar

  • 图 1  CsPbBr3薄膜的制备工艺图

    Fig. 1.  Fabrication process of CsPbBr3 film.

    图 2  不同浓度PVDF处理的PbBr2薄膜的SEM图像 (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL

    Fig. 2.  SEM images of PbBr2 films treated with different PVDF concentration: (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL.

    图 3  不同浓度PVDF处理的CsPbBr3薄膜的SEM图像 (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL

    Fig. 3.  SEM images of CsPbBr3 films treated with different PVDF concentration: (a) 0 mg/mL; (b) 0.3 mg/mL; (c) 0.5 mg/mL; (d) 1.0 mg/mL.

    图 4  PVDF处理前后CsPbBr3薄膜的AFM图像 (a) 控制组; (b) 0.5 mg/mL PVDF

    Fig. 4.  AFM images of CsPbBr3 films before and after PVDF treatment: (a) Control; (b) 0.5 mg/mL PVDF.

    图 5  PVDF不同添加量所制备的CsPbBr3薄膜的XRD图谱

    Fig. 5.  XRD patterns of CsPbBr3 films prepared with different amounts of PVDF.

    图 6  PVDF不同添加量所制备的CsPbBr3薄膜 (a) XPS全谱图; (b)—(d)分别对应Cs 3d, Pb 4f及Br 3d的高分辨率XPS图谱

    Fig. 6.  XPS spectra of CsPbBr3 films prepared with different amounts of PVDF: (a) XPS full spectrum; (b)–(d) correspond to the high-resolution XPS spectra of Cs 3d, Pb 4f and Br 3d, respectively.

    图 7  控制组和0.5 mg PVDF处理的CsPbBr3薄膜的FTIR光谱

    Fig. 7.  FTIR spectra of control and 0.5 mg PVDF-treated perovskite films.

    图 8  PVDF处理前后CsPbBr3薄膜的水接触角θca (a) 控制组, θca = 57.30°; (b) 0.5 mg PVDF, θca = 66.31°

    Fig. 8.  Water contact angle θca of CsPbBr3 films before and after PVDF treatment: (a) Control, θca = 57.30°; (b) 0.5 mg PVDF, θca = 66.31°.

    图 9  PVDF制备CsPbBr3钙钛矿晶体 (a) 生长过程; (b) 作用机理; (c) 器件结构示意图

    Fig. 9.  CsPbBr3 perovskite crystal prepared by PVDF: (a) Schematic growth process; (b) mechanism of action; (c) structural schematic of the device.

    图 10  PVDF不同添加量所制备的CsPbBr3薄膜 (a) UV-vis光谱图; (b) 稳态PL光谱图

    Fig. 10.  CsPbBr3 films prepared with different amounts of PVDF: (a) UV-vis spectra; (b) steady-state PL spectra.

    图 11  PVDF不同添加量所制备的CsPbBr3 PSCs的J-V曲线图

    Fig. 11.  J-V curves of CsPbBr3 PSCs prepared with different amounts of PVDF.

    图 12  PVDF不同添加量所制备的CsPbBr3-PSCs的各特性的箱试图(每组准备了26个电池装置) (a) FF; (b) VOC; (c) Jsc; (d) PCE

    Fig. 12.  Box attempts of different characteristics for CsPbBr3 PSCs prepared with different amounts of PVDF (26 cell devices were prepared for each group): (a) FF; (b) VOC; (c) Jsc; (d) PCE.

    图 13  PVDF不同添加量所制备的CsPbBr3 PSCs的瞬态VOC测量光谱

    Fig. 13.  Transient VOC spectrogram of CsPbBr3 PSCs prepared with different amounts of PVDF.

    图 14  PVDF不同添加量所制备的CsPbBr3-PSCs在空气中的稳定性

    Fig. 14.  Stability of CsPbBr3-PSCs prepared with different amounts of PVDF in air.

    表 1  PVDF不同添加量所制备的CsPbBr3 PSCs的光伏参数

    Table 1.  Photovoltaic parameters of CsPbBr3 PSCs prepared with different amounts of PVDF.

    器件薄膜类型开路电压
    VOC/V
    短路电流
    Jsc/(mA·cm–2)
    光电转换效
    率PCE/%
    填充因子
    FF/%
    Control1.346.776.8175
    0.3 mg PVDF1.367.037.1274
    0.5 mg PVDF1.318.268.1776
    1.0 mg PVDF1.337.397.4075
    下载: 导出CSV
  • [1]

    Wang D, Li W J, Du Z B, Li G D, Sun W H, Wu J H, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [2]

    Liu G C, Liu Z H, Wang L, Xie X Y 2021 Chem. Phys. 542 111061Google Scholar

    [3]

    Jin I S, Park S H, Kim K S, Jung J W 2020 J. Alloys Compd. 847 156512Google Scholar

    [4]

    Wan X J, Yu Z, Tian W M, Huang F Z, Jin S Y, Yang X C, Cheng Y B, Hagfeldt A, Sun L C 2020 J. Energy Chem. 46 8Google Scholar

    [5]

    Fu Y J, Sun Y P, Tang H, Wang L Y, Yu H Z, Cao D R 2021 Dye. Pigment. 191 109339Google Scholar

    [6]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [7]

    Huo X N, Wang K X, Yin R, Sun W W, Sun Y S, Gao Y K, You T T, Yin P G 2022 Sol. Energy Mater. Sol. Cells 247 111963Google Scholar

    [8]

    Zhu J W, He B L, Gong Z K, Ding Y, Zhang W Y, Li X K, Zong Z H, Chen H Y, Tang Q W 2020 ChemSusChem 13 1834Google Scholar

    [9]

    Ma J J, Li Y H, Li J, Qin M C, Wu X, Lv Z Y, Hsu Y J, Lu X H, Wu Y C, Fang G J 2020 Nano Energy 75 104933Google Scholar

    [10]

    Yu J X, Liu G X, Chen C M, Li Y, Xu M R, Wang T L, Zhao G, Zhang L 2020 J. Mater. Chem. C 8 6326Google Scholar

    [11]

    Liu X Y, Liu Z Y, Tan X H, Ye H B, Sun B, Xi S, Shi T L, Tang Z R, Liao G L 2019 J. Power Sources 439 227092Google Scholar

    [12]

    Su G D, He B L, Gong Z K, Ding Y, Duan J L, Zhao Y Y, Chen H Y, Tang Q W 2019 Electrochim. Acta 328 135102Google Scholar

    [13]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chemie Int. Ed. 130 3787Google Scholar

    [14]

    Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W 2018 Adv. Energy Mater. 8 1802346

    [15]

    Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z 2018 Nat. Commun. 9 4395Google Scholar

    [16]

    Lin Y H, Sakai N, Da P, Wu J, Sansom H C, Ramadan A J, Mahesh S, Liu J, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, Snaith H J 2020 Sciences 369 96Google Scholar

    [17]

    Zhu H W, Liu Y H, Eickemeyer F T, Pan L F, Ren D, Ruiz-Preciado M A, Carlsen B, Yang B W, Dong X F, Wang Z W, Liu H L, Wang S R, Zakeeruddin S M, Hagfeldt A, Dar M I, Li X G, Grätzel M 2020 Adv. Mater. 32 1907757Google Scholar

    [18]

    Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y 2020 Adv. Mater. 32 1907769Google Scholar

    [19]

    Zheng H Y, Xu X X, Xu S D, Liu G Z, Chen S H, Zhang X X, Chen T W, Pan X 2019 J. Mater. Chem. C 7 4441Google Scholar

    [20]

    Xiang W C, Chen Q, Wang Y Y, Liu M J, Huang F Z, Bu T L, Wang T S, Cheng Y B, Gong X, Zhong J, Liu P, Yao X, Zhao X J 2017 J. Mater. Chem. A 5 5486Google Scholar

    [21]

    Chen C, Wang X, Li Z P, Du X F, Shao Z P, Sun X H, Liu D C, Gao C Y, Hao L Z, Zhao Q Q, Zhang B Q, Cui G L, Pang S P 2022 Angew. Chemie Int. Ed. 61 e202113932Google Scholar

    [22]

    Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F 2015 ACS Appl. Mater. Interfaces 7 4955Google Scholar

    [23]

    Qi Y, Qu J, Moore J, Gollinger K, Shrestha N, Zhao Y, Pradhan N, Tang J, Dai Q 2022 Org. Electron. 104 106487Google Scholar

    [24]

    Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M 2016 Nat. Energy 1 317Google Scholar

    [25]

    Santhosh N, Daniel R I, Acchutharaman K R, Pandian M S, Ramasamy P 2022 Mater. Today Commun. 31 103446Google Scholar

    [26]

    Zheng H Y, Liu G Z, Wu W W, Xu H F, Pan X 2021 J. Energy Chem. 57 593Google Scholar

    [27]

    Cao X B, Zhang G S, Jiang L, Cai Y F, Wang Y, He X, Zeng Q G, Chen J Z, Jia Y, Wei J Q 2021 Green Chem. 23 2104Google Scholar

    [28]

    Gao B, Meng J 2020 Sol. Energy 211 1223Google Scholar

    [29]

    Paek S, Schouwink P, Athanasopoulou E N, Cho K T, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin M K, Gao P 2017 Chem. Mater. 29 3490Google Scholar

    [30]

    Zhang Y, Zhuang X H, Zhou K, Cai C, Hu Z Y, Zhang J, Zhu Y J 2017 J. Mater. Chem. C 5 9037Google Scholar

    [31]

    Chu Z D, Yang M J, Schulz P, Wu D, Ma X, Seifert E, Sun L Y, Li X Q, Zhu K, Lai K J 2017 Nat. Commun. 8 2230Google Scholar

    [32]

    Lau C F J, Deng X F, Zheng J H, Kim J C, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [33]

    Luo J S, Jia C Y, Wan Z Q, Han F, Zhao B W, Wang R L 2017 J. Power Sources 342 886Google Scholar

    [34]

    Liu Z, Shi T, Tang Z, Sun B, Liao G 2016 Nanoscale 8 7017Google Scholar

    [35]

    Chen H, Liu T, Zhou P, Li S, Ren J, He H C, Wang J S, Wang N, Guo S J 2020 Adv. Mater. 32 1905661Google Scholar

    [36]

    Zhang P, Cao F R, Tian W, Li L 2022 Sci. China Mater. 65 321Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [3] 王斐, 杨振清, 夏雨虹, 刘畅, 林春丹. Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究. 物理学报, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [7] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略. 物理学报, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [11] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [14] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [15] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
计量
  • 文章访问数:  1790
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-06-14
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回