搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串扰忆阻突触异质离散神经网络的共存放电与同步行为

王璇 杜健嵘 李志军 马铭磷 李春来

引用本文:
Citation:

串扰忆阻突触异质离散神经网络的共存放电与同步行为

王璇, 杜健嵘, 李志军, 马铭磷, 李春来

Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses

Wang Xuan, Du Jian-Rong, Li Zhi-Jun, Ma Ming-Lin, Li Chun-Lai
PDF
导出引用
  • 突触串扰由相邻突触间神经递质的溢出引起,对神经系统的放电特性及信号传输有着深远影响。利用两个忆阻器模拟生物神经突触,双向耦合Chialvo离散神经元和Rulkov离散神经元,并考虑耦合状态下突触间的串扰行为,构建一类忆阻突触耦合异质离散神经网络。研究分析表明,神经网络不动点的数量及稳定性依赖于突触串扰强度。同时,通过分析分岔图、相图、李雅普诺夫指数谱和时序图等发现,随着突触串扰强度的变化,神经网络表现出不同的共存放电行为。此外,基于神经元放电序列的相位差及同步因子,研究了不同耦合强度及不同系统初始条件和参数情形下,突触串扰强度对神经网络同步行为的影响。
    Synaptic crosstalk, which occurs due to the overflow of neurotransmitters between neighboring synapses, holds a crucial position in shaping the discharge characteristics and signal transmission within nervous systems. In this paper, two memristors are employed to simulate biological neural synapses and bidirectionally couple Chialvo discrete neuron and Rulkov discrete neuron. Thus, a heterogeneous discrete neural network with memristor-synapse coupling is constructed that takes into account the crosstalk behavior between memristor synapses in the coupled state. The analysis demonstrates that the quantity and stability of fixed points within this neural network intimately depend on the strength of synaptic crosstalk. Additionally, through a thorough investigation of bifurcation diagrams, phase diagrams, Lyapunov exponents, and time sequences, we uncover the multi-stable state property exhibited by the neural network. This property manifests in the coexistence of diverse discharge behaviors, which vary significantly with the synaptic crosstalk strength. Intriguingly, the introduction of control parameter to state variable triggers offset boosting and the emergence of infinite stable states within the neural network. Furthermore, we conducted a comprehensive study to explore the influence of synaptic crosstalk strength on the synchronization behavior of the neural network, considering various coupling strengths, initial conditions, and parameters. Our analysis, which was founded on the phase difference and synchronization factor of neuronal discharge sequences, revealed that the neural network maintains phase synchronization despite the variations of the two crosstalk strengths. The insights gained from this paper provide significant support in elucidating the electrophysiological mechanisms underlying biological neural information processing and transmission. Especially, the coexisting discharge phenomenon in the neural network provides an electrophysiological theoretical foundation for the clinical symptoms and diagnosis of the same neurological disease among different individuals or at different stages. And the doctors can predict the progression and prognosis of neurological disease based on the patterns and characteristics of coexisting discharge in patients, enabling them to adopt appropriate intervention measures and monitoring plans. Therefore, the research on coexisting discharge in the neural system contributes to the comprehensive treatment of nervous system disease.
  • [1]

    Bai J, Guan F R, Tang G N 2021 Acta Phys. Sin. 70 52 (in Chinese) [白婧,关富荣,唐国宁 2021 物理学报 70 52]

    [2]

    Stein R B, Gossen E R, Jones K E 2005 Nat. Rev. Neurosci. 6 389

    [3]

    An X L, Qiao S, Zhang L 2021 Acta Phys. Sin. 70 46 (in Chinese) [安新磊,乔帅,张莉 2021 物理学报 70 46]

    [4]

    Tan F, Zhou L L, Lu J W, Quan, H Z, Liu K Y 2022 Eur. J. Control 70 100764

    [5]

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese) [徐泠风,李传东,陈玲 2016 物理学报 65 240701]

    [6]

    Liu B, Peng X N, Li C L 2024 Int. J. Electron. Commun.

    [7]

    Guo M, Zhu Y L, Liu R Y, Zhao K X, Dou G 2021 Neurocomputing 472 12

    [8]

    Xu C, Wang C H, Sun J R 2023 Sci. Sin. Inform. 53 164 (in Chinese) [徐聪,王春华,孙晶茹 2023 中国科学:信息科学 53 164]

    [9]

    Zhang M J, Zhang J G, Wei L X, Nan M R 2021 Chin. J.Med. Phys. 38 1273 (in Chinese) [张美娇,张建刚,魏立祥,南梦冉 2021 中国医学物理学杂志 38 1273]

    [10]

    Xu Q, Zhu D 2020 IETE Tech. Rev. 38 563

    [11]

    Lu Y C, Li H M, Li C L 2023 Neurocomputing 544 126246

    [12]

    Li C L, Yang Y Y, Yang X B, Zi X Y, Xiao F L 2022 Nonlinear Dyn. 108 1697

    [13]

    Li C L, Wang X, Du J R, Li Z J 2023 Nonlinear Dyn. 111 21333

    [14]

    Tian Z K, Zhou D 2019 Front. Comput. Neurosci. 14 40

    [15]

    Ma M L, Xiong K L, Li Z J Sun Y C 2023 Mathematics. 11 375

    [16]

    Bashkirtseva I A, Nasyrova V, Ryashko L B 2018 Chaos Soliton Fract. 110 76

    [17]

    Kinouchi O, Tragtenberg M H R 1996 Int. J. Bifurc. Chaos 6 2343

    [18]

    Girardi-Schappo M, Tragtenberg M H, Kinouchi O 2013 J. Neurosci. Methods 220 116

    [19]

    Rosenblatt F 1963 Am J Psychol 76 705

    [20]

    Lu Y M, Wang C H, Deng Q, Xu C 2022 Chin. Phys. B 31 60502

    [21]

    Guo H M, Liang Y, Dong Y J, Wang G Y 2023 Acta Phys. Sin. 72 158 (in Chinese) [郭慧朦,梁燕,董玉姣,王光义 2023 物理学报 72 158]

    [22]

    Zhou L L, Lin H C, Tan F 2023 Chaos Soliton Fract. 173 113643

    [23]

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 146 (in Chinese) [秦铭宏,赖强,吴永红 2022 物理学报 71 146]

    [24]

    Wu C J, Fang L Y, Yang N N 2024 Acta Phys. Sin. 73 010501 (in Chinese) [吴朝俊,方礼熠,杨宁宁 物理学报 73 010501]

    [25]

    Chua L O 2005 Int. J. Bifurc. Chaos 15 3435

    [26]

    Jin P P, Wang G Y, Liang Y, Iu H H, Chua L O 2021 IEEE Trans. Circuits Syst. I 68 4419

    [27]

    Lai Q, Yang L 2022 Chaos Soliton Fract. 165 112781

    [28]

    Li K X, Bao H, Li H Z, Ma J, Hua Z Y, Bao B C 2021 IEEE Trans. Ind. Inf. 18 1726

    [29]

    Lu Y M, Wang C H, Deng Q L, Xu C 2022 Chin. Phys. B 31 060502

    [30]

    Kawahara M, Kato‐Negishi M, Tanaka K 2017 Metallomics 9 619

    [31]

    A N Shrivastava, A Triller, W Sieghart 2011 Front. Cell. Neurosci. 5 7

    [32]

    Li Z J, Yi Z 2022 Electron. Lett. 58 539

    [33]

    Ding D W, Chen X Y, Yang Z L, Hu Y B, Wang M Y, Zhang H W, Zhang X 2022 Chaos Soliton Fract. 158 112014

    [34]

    Li Z J, Peng C, Wang M J, Ma M L 2024 Indian J. Phys. 98 1043

    [35]

    Ma M L, Xiong K L, Li Z J, He S B 2024 Chin. Phys. B. 33 028706

    [36]

    Pool R 1989 Science 243 604

    [37]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 IEEE Trans. Circuits Syst. I 60 3008

    [38]

    Ren L J, Mou J, Banerjee S, Zhang Y S 2023 Chaos Soliton Fract. 167 113024

    [39]

    Li C, Yi C, Li Y, Mitro S, Wang Z 2024 Chaos 34 031102.

    [40]

    Ma C G, Mou J, Xiong L, Banerjee S, Liu T M, Han X T 2021 Nonlinear Dyn. 103 2867

    [41]

    Li C, Wang X, Chen G 2017 Nonlinear Dyn. 90 1335-1341.

    [42]

    Li C, Gao Y, Lei T, Li RY, Xu Y. 2024 Int. J. Bifurcation and Chaos 34 2450008.

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, doi: 10.7498/aps.72.20222013
    [2] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, doi: 10.7498/aps.71.20212017
    [3] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, doi: 10.7498/aps.70.20210116
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, doi: 10.7498/aps.69.20200617
    [5] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, doi: 10.7498/aps.68.20181577
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [7] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, doi: 10.7498/aps.68.20191023
    [8] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, doi: 10.7498/aps.68.20191262
    [9] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, doi: 10.7498/aps.68.20182306
    [10] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, doi: 10.7498/aps.67.20180025
    [11] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, doi: 10.7498/aps.65.128503
    [12] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, doi: 10.7498/aps.64.240503
    [13] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, doi: 10.7498/aps.64.148501
    [14] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, doi: 10.7498/aps.63.080503
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [17] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, doi: 10.7498/aps.61.217306
    [18] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, doi: 10.7498/aps.60.048703
    [19] 刘勇. 耦合系统的混沌相位同步. 物理学报, doi: 10.7498/aps.58.749
    [20] 吴 王莹, 徐健学, 何岱海, 靳伍银. 两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究. 物理学报, doi: 10.7498/aps.54.3457
计量
  • 文章访问数:  112
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-09

/

返回文章
返回