搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共享孔径技术的低RCS电磁超构表面天线设计

李桐 杨欢欢 李奇 廖嘉伟 高坤 季轲峰 曹祥玉

引用本文:
Citation:

基于共享孔径技术的低RCS电磁超构表面天线设计

李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉

Low-RCS electromagnetic metasurface antenna based on shared-aperture technique

Li Tong, Yang Huanhuan, Li Qi, Liao Jiawei, Gao Kun, Ji Kefeng, Cao Xiangyu
PDF
导出引用
  • 提出一种基于共享孔径技术设计低雷达散射截面(Radar Cross Section, RCS)电磁超构表面天线的新方法. 该方法首先设计具有低RCS性能的超构表面,然后借鉴共享孔径技术思想,将超构表面和传统天线的辐射结构直接共享口径紧密排列,得到新型低RCS天线结构,并结合电流分析和局部结构修正,优化天线的辐射性能,最终同时实现天线的良好辐射和宽带低RCS性能. 为了阐明该方法,基于极化旋转机理设计了一款低RCS超构表面,采用共享孔径思想和电流分析,得到了一款宽带低RCS超构表面天线,详细分析了该天线的工作机理与性能. 结果表明:设计的天线在保证较好辐射的同时,实现了超宽带RCS减缩,提出的设计方法摒弃了从天线到低RCS天线的传统设计思路,通过逆向思维,将散射的优化问题转化为辐射的优化问题,不仅实现了天线与超构表面的一体化设计,还显著降低了低RCS天线优化设计的难度,加速了天线优化进程.
    In this paper, a novel shared-aperture method of electromagnetic metasurface and antenna is proposed to obtain low radar-cross-section (RCS) performance. This method first designs low-RCS metasurface and conventional antenna independently, and then obtains novel low-RCS antenna by combining this metasurface with conventional antenna based on shared-aperture technique. Besides, current analysis and consequent local structure modification are also conducted to guarantee the antenna’s good radiation performance and broadband RCS reduction in the meantime. Using this method, a dual-layer polarization rotation unit cell is first proposed and its broadband working principle is investigated by both theoretical analysis and numerical comparison. Based on this unit cell, a broadband low-RCS metasurface is constructed. Then an initial shared-aperture metasurface antenna is obtained by substituting the middle cells in the metasurface with conventional patch antenna directly. Through careful analysis of surface current in radiation mode, the gain decrease of this metasurface antenna is revealed. On this basis, a limited removing strategy is put forward and some metasurface cells in the antenna is removed with the aid of current analysis. Consequently, an improved shared-aperture metasurface antenna is proposed. (The design flow of this metasurface antenna is displayed in the following Fig. 1) This improved antenna works from 6.3 GHz to 7.48 GHz, which is a bit wider than conventional patch antenna. Its gain is also higher than conventional antenna with the maximum improvement of 1 dB. Meanwhile, apparent RCS reduction is obtained from 6 GHz to 16 GHz for any polarized incident wave, and the reduction peak is larger than 20 dB. Fabrications and measurements are finally conducted. The good agreements of measured results and numerical calculations are achieved. The well-behaved radiation performance and broadband low-RCS property of this metasurface antenna verify the effectiveness of the proposed method. Different from most reported design method of low-RCS antenna directly from conventional antenna, the proposed method adopts a reverse thinking and converts the scattering optimization to radiation optimization, realizing the integration of metasurface and antenna, and making the design of low-RCS antenna easier and faster.
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Cui T 2017 Journal of Optics 19 084004

    [3]

    Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microw. Antennas Propag. 13 185

    [4]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wireless Propag. Lett. 23 1206

    [5]

    Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wireless Propag. Lett. 19 982

    [6]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96

    [7]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76

    [8]

    Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422

    [9]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wireless Propag. Lett. 19 1058

    [10]

    Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508

    [11]

    Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wireless Propag. Lett. 15 448

    [12]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422

    [13]

    Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67

    [14]

    Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665

    [15]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325

    [16]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [17]

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101 (in Chinese) [冯奎胜、李娜、杨欢欢 2021 物理学报 70 194101]

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang HH 2013 IEEE Trans. Antennas Propag. 61 1479

    [19]

    Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 66 4180

    [20]

    Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582

    [21]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wireless Propag. Lett. 14 1582

    [22]

    Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955

    [23]

    Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834

    [24]

    Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663

    [25]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644

    [26]

    Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975

    [27]

    Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wireless Propag. Lett. 23 768

    [28]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239

    [29]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075

    [30]

    Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626

    [31]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793

    [32]

    Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.71.20211254
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, doi: 10.7498/aps.70.20211254
    [3] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, doi: 10.7498/aps.70.20210746
    [4] 刘俊群. 天线方向系数的一类计算逼近方法. 物理学报, doi: 10.7498/aps.69.20191268
    [5] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, doi: 10.7498/aps.69.20200797
    [6] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, doi: 10.7498/aps.69.20200978
    [7] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, doi: 10.7498/aps.68.20182107
    [8] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, doi: 10.7498/aps.66.064203
    [9] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计. 物理学报, doi: 10.7498/aps.64.084101
    [10] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, doi: 10.7498/aps.64.224219
    [11] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, doi: 10.7498/aps.64.094102
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, doi: 10.7498/aps.64.054101
    [13] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, doi: 10.7498/aps.64.024219
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, doi: 10.7498/aps.63.084103
    [15] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, doi: 10.7498/aps.63.224102
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, doi: 10.7498/aps.62.064103
    [17] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, doi: 10.7498/aps.61.208401
    [18] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, doi: 10.7498/aps.60.054104
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, doi: 10.7498/aps.58.919
    [20] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算. 物理学报, doi: 10.7498/aps.58.5126
计量
  • 文章访问数:  128
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-24

/

返回文章
返回