搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全黄铜矿CuGaSe2/CuInSe2两端叠层太阳能电池的顶端设计与优化:第一性原理计算及器件模拟

钟建成 张笑天 林常青 薛阳 唐欢 黄丹

引用本文:
Citation:

全黄铜矿CuGaSe2/CuInSe2两端叠层太阳能电池的顶端设计与优化:第一性原理计算及器件模拟

钟建成, 张笑天, 林常青, 薛阳, 唐欢, 黄丹

Top cell design and optimization of all-chalcopyrite CuGaSe2/CuInSe2 two-terminal tandem solar cells: first-principles calculations and device simulations

Zhong Jian-Cheng, Zhang Xiao-Tian, Lin Chang-Qing, Xue Yang, Tang Huan, Huang Dan
PDF
导出引用
  • 近年来单结太阳能电池的光电转换效率逐步提高,但其最高效率受到Shockley-Queisser (SQ)极限的限制。为了超越SQ极限,学者们提出了叠层太阳能电池。本工作结合第一性原理计算和SCAPS-1D器件模拟对黄铜矿化合物CuGaSe2/CuInSe2叠层太阳能电池进行了系统的理论研究。首先通过第一性原理计算获取了CuGaSe2(CGS)的微观电子结构、缺陷特性及对应的宏观性能参数,作为后续器件模拟CGS太阳能电池的输入参数。随后采用SCAPS-1D软件分别对单结CGS与CuInSe2(CIS)太阳能电池进行了仿真模拟。单结CIS太阳能电池的模拟结果与实验值具有良好的一致性。对单结CGS电池而言,在短路电流(Jsc)最高的生长环境下进一步模拟发现,将电子传输层(ETL)换为ZnSe后可提高CGS太阳能电池的开路电压(Voc)和PCE。最后,将优化后的CGS与CIS太阳能电池进行了两端(2T)单片串联的器件模拟,结果显示在生长环境为富Cu、富Ga、贫Se,生长温度为700 K时,2T单片CGS/CIS叠层太阳能电池的PCE最高为28.91%,高于当前最高的单结太阳能电池效率,展现出良好的应用前景。
    Solar cells have attracted much attention since they can convert solar energy directly into electricity, and have been widely utilized in manufacturing industry and people's daily life. Although the power conversion efficiency (PCE) of single-junction solar cells has gradually improved in recent years, its maximum efficiency is restricted by the Shockley-Queisser (SQ) limit of single-junction solar cells. To exceed the SQ limit and further obtain high efficiency solar cells, researchers have proposed the concept of tandem solar cells. In this work, a systematic theoretical study of chalcopyrite CuGaSe2/CuInSe2 tandem solar cells was carried out by combining first-principle calculations and SCAPS-1D device simulations. Firstly, the electronic structure, defect properties and corresponding macroscopic performance parameters of CuGaSe2 (CGS) were obtained by first-principles calculations, which were adopted as input parameters for subsequent device simulations of CGS solar cells. Subsequently, the simulations of single-junction CGS and CuInSe2 (CIS) solar cells were carried out using SCAPS-1D software, respectively. The simulation results for the single junction CIS solar cells are in good agreement with the experimental values. For single-junction CGS cells, the device simulations revealed that CGS single-junction solar cells had the highest short-circuit current (Jsc) and PCE at the growth condition of Cu-rich, Ga-rich and Se-poor chemical growth condition. Further optimization found that the open-circuit voltage (Voc) and PCE of CGS solar cells can be improved by replacing the electron transport layer (ETL) with ZnSe after the devices with the highest short-circuit current (Jsc). Finally, after the optimized CGS and CIS solar cells were connected in series with two-terminal (2T) monolithic tandem solar cell, the device simulation results show that under the growth temperature of 700 K and the growth environment of Cu-rich, Ga-rich, and Se-poor, with ZnSe as the ETL, the CGS thickness of 2000 nm and the CIS thickness of 1336 nm, the PCE of 2T monolithic CGS/CIS tandem solar cell can reach 28.91 %, which is higher than the recorded efficiency of the current single-junction solar cells, and shows a good application prospect.
  • [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499316

    [2]

    Li S H, Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E, Chen Y S 2018 Acta Phys. Sin. 67158801(in Chinese) [李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生2018物理学报67158801]

    [3]

    Kasaeian A, Eshghi A T, Sameti M 2015 Renewable Sustainable Energy Rev. 43584

    [4]

    Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J X, Fang L, Han C, Procel P, Isabella O, Gao P Q, Li Z G, Xu X X 2023 Nat. Energy 8789

    [5]

    Chen W, Hong J L, Yuan X L, Liu J R 2016 J. Clean. Prod. 1121025

    [6]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics 91863

    [7]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X J 2024 Prog. Photovoltaics 323

    [8]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys.: X 41548305

    [9]

    Wang J Z, Qi Y C, Zheng H F, Wang R L, Bai S Y, Liu Y N, Liu Q, Xiao J, Zou D C, Hou S C 2023 J. Mater. Chem. A 1113201

    [10]

    Miyasaka T, Kulkarni A, Kim G M, Öz S, Jena A K 2020 Adv. Energy Mater. 101902500

    [11]

    Wu X W, Ming C, Shi J, Wang H, West D, Zhang S B, Sun Y Y 2022 Chin. Phys. Lett. 39046101

    [12]

    Wang X T, Fu Y H, Na G R, Li H D, Zhang L J 2019 Acta Phys. Sin. 68157101(in Chinese) [王雪婷, 付钰豪, 那广仁, 李红东, 张立军2019物理学报68157101]

    [13]

    Green M A, Bremner S P 2017 Nat. Mater. 1623

    [14]

    Wang R, Huang T Y, Xue J J, Tong J H, Zhu K, Yang Y 2021 Nat. Photonics 15411

    [15]

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71038801(in Chinese) [赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前2022物理学报71038801]

    [16]

    Yue M, Wang Y, Liang H L, Mei Z X 2022 Chinese Phys. B 31088801

    [17]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Wang K F 2023 Solar RRL 72300156

    [18]

    Eperon G E, Hörantner M T, Snaith H J 2017 Nat. Rev. Chem. 10095

    [19]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 62390

    [20]

    Chen L J, Niu G X, Niu L B, Song Q L 2022 Chinese Phys. B 31038802

    [21]

    Xie X P, Bai Q Y, Liu G, Dong P, Liu D W, Ni Y F, Liu C B, Xi H, Zhu W D, Chen D Z, Zhang C F 2022 Chinese Phys. B 31108801

    [22]

    Adhyaksa G W P, Johlin E, Garnett E C 2017 Nano Lett. 175206

    [23]

    Hou F H, Ren X Q, Guo H K, Ning X L, Wang Y L, Li T T, Zhu C J, Zhao Y, Zhang X D 2024 Nano Energy 124109476

    [24]

    Todorov T K, Bishop D M, Lee Y S 2018 Sol. Energy Mater. Sol. Cells 180350

    [25]

    Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner M Ch 2003 Prog. Photovoltaics 11243

    [26]

    Schmid M, Caballero R, Klenk R, Krč J, Rissom T, Topi M, Lux-Steiner M Ch 2010 EPJ Photovoltaics 110601

    [27]

    Outlaw-Spruell K, Crunk J, Septina W, Muzzillo C P, Zhu K, Gaillard N 2022 ACS Appl. Mater. Interfaces 1454607

    [28]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3828

    [29]

    Ramanujam J, Singh U P 2017 Energy Environ. Sci. 101306

    [30]

    Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2212

    [31]

    Ishizuka S 2019 Phys. Status Solidi A 2161800873

    [32]

    Siebentritt S, Schuler S 2003 J. Phys. Chem. Solids 641621

    [33]

    Feurer T, Carron R, Torres Sevilla G, Fu F, Pisoni S, Romanyuk Y E, Buecheler S, Tiwari A N 2019 Adv. Energy Mater. 91901428

    [34]

    Gong J B, Gao D Q, Ma Z Y, Yang X K, Zhang J J, Liu X X, Chen C, Tang J, Da B, Li J M, Fang G J, Xiao X D 2022 Solar RRL 62200766

    [35]

    Prathapani S, Zhan Y Q 2021 Energy Technol. 92100193

    [36]

    Zhang Y, Wang Q, Zhang X B, Peng N, Liu Z Q, Chen B Z, Huang S S, Wang Z Y 2017 Chinese Phys. Lett. 34028802

    [37]

    Bush K A, Manzoor S, Frohna K, Yu Z S J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 32173

    [38]

    Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, Tiwari A N 2010 Prog. Photovoltaics 18434

    [39]

    Kemell M, Ritala M, Leskelä M 2005 Crit. Rev. Solid State Mater. Sci. 301

    [40]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 251522

    [41]

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta Phys. Sin. 70038801(in Chinese) [甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流2021物理学报70038801]

    [42]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman Md F, Rubel M H K, Islam Md R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 373957

    [43]

    Hossain M K, Toki G F I, Madan J, Pandey R, Bencherif H, Mohammed M K A, Islam Md R, Rubel M H K, Rahman Md F, Bhattarai S, Samajdar D P 2023 New J. Chem. 478602

    [44]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 615

    [45]

    Blöchl P E 1994 Phys. Rev. B 5017953

    [46]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 1188207

    [47]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135188

    [48]

    Pindolia G, Shinde S M, Jha P K 2022 Sol. Energy 236802

    [49]

    Choudhary K, Bercx M, Jiang J, Pachter R, Lamoen D, Tavazza F 2019 Chem. Mater. 315900

    [50]

    Minbashi M, Ghobadi A, Ehsani M H, Dizaji H R, Memarian N 2018 Sol. Energy 176520

    [51]

    Madan J, Shivani, Pandey R, Sharma R 2020 Sol. Energy 197212

    [52]

    Gupta G K, Dixit A 2018 Opt. Mater. 8211

    [53]

    Islam Md T, Jani Md R, Islam A F, Shorowordi K Md, Chowdhury S, Nishat S S, Ahmed S 2021 IEEE Trans. Electron Devices 68618

    [54]

    Houck D W, Siegler T D, Korgel B A 2019 ACS Appl. Energy Mater. 21494

    [55]

    Wang R, Dou B Y, Zheng Y F, Wei S H 2022 Sci. China: Phys., Mech. Astron. 65107311

    [56]

    Liu X H, Hu Y 2022 J. Mater. Sci.: Mater. Electron. 336253

    [57]

    Persson C 2008 Appl. Phys. Lett. 93072106

    [58]

    Chowdhury M S, Shahahmadi S A, Chelvanathan P, Tiong S K, Amin N, Techato K, Nuthammachot N, Chowdhury T, Suklueng M 2020 Results Phys. 16102839

    [59]

    Simya O K, Mahaboobbatcha A, Balachander K 2015 Superlattice Microst. 82248

    [60]

    Gupta G K, Dixit A 2020 Int. J. Energy Res. 443724

    [61]

    Ahmed S, Jannat F, Khan Md A K, Alim M A 2021 Optik 225165765

    [62]

    Saad M, Kassis A 2011 Sol. Energy Mater. Sol. Cells 951927

    [63]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 77415

    [64]

    Aida Y, Depredurand V, Larsen J K, Arai H, Tanaka D, Kurihara M, Siebentritt S 2015 Prog. Photovoltaics 23754

    [65]

    Wang J Q, Wang Z H, Wang W, Wang Y, Hu X L, Liu J X, Gong X Z, Miao W L, Ding L L, Li X B, Tang J G 2022 Nanoscale 146709

    [66]

    Abdelaziz S, Zekry A, Shaker A, Abouelatta M 2020 Opt. Mater. 101109738

    [67]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181372

    [68]

    Ganose A M, Scanlon D O 2016 J. Mater. Chem. C 41467

    [69]

    Bencherif H, Meddour F, Elshorbagy M H, Khalid Hossain M, Cuadrado A, Abdi M A, Bendib T, Kouda S, Alda J 2022 Micro Nanostruct. 171207403

    [70]

    Alsalme A, Alsaeedi H 2022 Nanomaterials 1396

    [71]

    Moiz S A, Alzahrani M S, Alahmadi A N M 2022 Polymers 143610

    [72]

    Dai C M, Xu P, Huang M L, Cai Z H, Han D, Wu Y N, Chen S Y 2019 APL Mater. 7081122

    [73]

    Huang D, Persson C, Ju Z P, Dou M F, Yao C M, Guo J 2014 EPL 10537007

    [74]

    Ju Z P, Lin C Q, Xue Y, Huang D, Persson C 2023 J. Phys. Chem. Solids 183111655

    [75]

    Green M A 1990 J. Appl. Phys. 672944

    [76]

    Zhang S B, Wei S H, Zunger A 2001 Phys. Rev. B 63075205

    [77]

    Lany S, Zunger A 2008 Phys. Rev. B 78235104

    [78]

    Huang D, Lin C Q, Xue Y, Chen S Y, Zhao Y J, Persson C 2022 Phys. Chem. Chem. Phys. 2425258

    [79]

    Van De Walle C G, Neugebauer J 2004 J. Appl. Phys. 953851

    [80]

    Chu W B, Zheng Q J, Prezhdo O V, Zhao J, Saidi W A 2020 Sci. Adv. 6 eaaw7453

    [81]

    Wei J C, Jiang L L, Huang M L, Wu Y N, Chen S Y 2021 Adv. Funct. Mater. 312104913

    [82]

    Huang M L, Zheng Z N, Dai Z X , Guo X J, Wang S S, Jiang L S, Wei J C, Chen S Y 2022 J. Semicond. 43042101

    [83]

    Huang M L, Cai Z H, Wang S S, Gong X G, Wei S H, Chen S Y 2021 Small 172102429

    [84]

    Ma J, Wei S H, Gessert T A, Chin K K 2011 Phys. Rev. B 83245207

    [85]

    Wang C L, Zhao Y, Ma T S, An Y D, He R, Zhu J W, Chen C, Ren S Q, Fu F, Zhao D W, Li X F 2022 Nat. Energy 7744

    [86]

    Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 661994

    [87]

    Fan S W, Chen Y, Yang L 2022 J. Phys. Chem. C 12619446

    [88]

    Choi J W, Shin B, Gorai P, Hoye R L Z, Palgrave R 2022 ACS Energy Lett. 71553

    [89]

    Patel P K 2021 Sci. Rep. 113082

    [90]

    Deepthi Jayan K, Sebastian V 2021 Sol. Energy 21740

    [91]

    Hossain M K, Uddin M S, Toki G F I, Mohammed M K A, Pandey R, Madan J, Rahman Md F, Islam Md R, Bhattarai S, Bencherif H, Samajdar D P, Amami M, Dwivedi D K 2023 RSC Adv. 1323514

    [92]

    Liang H M, Feng J G, Rodríguez-Gallegos C D, Krause M, Wang X, Alvianto E, Guo R J, Liu H H, Kothandaraman R K, Carron R, Tiwari A N, Peters I M, Fu F, Hou Y 2023 Joule 72859

    [93]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236195

    [94]

    Xu Q J, Zhao Y, Zhang X D 2020 Sol. RRL 41900206

    [95]

    Singh V K, Srivastava S, Singh A K, Chauhan M S, Patel S P, Singh R S 2023 Environ. Sci. Pollut. Res. 3098747

    [96]

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H, 2023 Acta Phys. Sin. 72058801(in Chinese) [张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉2023物理学报72058801]

  • [1] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, doi: 10.7498/aps.72.20222300
    [2] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, doi: 10.7498/aps.72.20222019
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20211796
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [7] 卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner. FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210056
    [8] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, doi: 10.7498/aps.69.20200656
    [9] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [10] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [11] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [12] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.157303
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, doi: 10.7498/aps.62.246301
    [14] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2836
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [18] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, doi: 10.7498/aps.57.1078
    [19] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7827
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  240
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-02

/

返回文章
返回