搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能La-Co共替代M型永磁铁氧体的磁各向异性增强机理研究进展

刘若水 王利晨 俞翔 孙洋 何诗悦 赵同云 沈保根

引用本文:
Citation:

高性能La-Co共替代M型永磁铁氧体的磁各向异性增强机理研究进展

刘若水, 王利晨, 俞翔, 孙洋, 何诗悦, 赵同云, 沈保根

Progress of magnetic anisotropy enhancement mechanism in high-performance La-Co co-substituted M-type ferrites

Liu Ruo-Shui, Wang Li-Chen, Yu Xiang, Sun Yang, He Shi-Yue, Zhao Tong-Yun, Shen Bao-Gen
PDF
导出引用
  • 自20世纪末以来,La-Co共替代的M型铁氧体备受关注,已成为高性能永磁铁氧体的基础材料。Co2+的未淬灭轨道矩被认为是增强铁氧体单轴各向异性的原因,但其微观作用机理尚未完全解释清楚。为了满足铁氧体材料日益增长的性能需求,理解其磁各向异性增强机理至关重要,并寻求从根源上的提升、低成本和高效的方法,以制定开发高性能产品的指导原则。本文综述了一系列研究工作,旨在确定Co离子在晶格中的取代位置,这是增强磁各向异性的关键。这些研究为进一步提高永磁铁氧体的磁性能提供了重要的材料设计参考。
    La-Co co-substituted M-type ferrite,first reported at the end of the 20th century,has garnered continuous attention from researchers worldwide,serving as the cornerstone for high-performance permanent magnet ferrites.The unquenched orbital moments of Co2+ play a pivotal role in enhancing the uniaxial anisotropy of M-type ferrites.However,a comprehensive understanding of its microscopic mechanism remains elusive.In response to the escalating performance demands of ferrite materials,elucidating the mechanism behind magnetic anisotropy enhancement becomes imperative,alongside the quest for guiding principles facilitating the swift and cost-effective development of high-performance products.but its mechanism at the microscopic level has not been explained.This review encompasses a comprehensive analysis of various studies aimed at pinpointing the crystal sites of Co substitution within the lattice.These investigations including neutron diffraction,nuclear magnetic resonance,and Mössbauer spectroscopy delve into the fundamental origins underlying the enhancement of magnetic anisotropy,thereby furnishing valuable insights for material design strategies geared towards further augmenting the magnetic properties of permanent magnet ferrites.The exploration of Co-substitution sites has yielded noteworthy findings.Through meticulous examination and analysis,researchers have discerned the intricate interplay between Co ions and the lattice structure,shedding light on the mechanisms governing magnetic anisotropy enhancement.The current mainstream view is that Co ions tend to occupy more than one site,namely the 4f1,12k,and 2a sites,all of which are located within the spinel lattice.However,there have also been differing viewpoints,indicating that further exploration is needed to uncover the primary controlling factors influencing Co occupancy.Notably,the identification of specific Co substitution sites,especially the spin-down tetrahedron 4f1,has enabled targeted modifications,culminating in the fine-tuning of magnetic properties with remarkable precision.Furthermore,the reviewed studies underscore the pivotal role of crystallographic engineering in tailoring the magnetic characteristics of ferrite materials.By strategically manipulating Co substitution,researchers have harnessed the intrinsic properties of the lattice to amplify magnetic anisotropy,thereby unlocking new avenues for the advancement of permanent magnet ferrites.In conclusion,the collective findings outlined in this review herald a promising trajectory for the field of permanent magnet ferrites.Armed with a nuanced understanding of Co-substitution mechanisms,researchers are poised to chart novel pathways toward the development of next-generation ferrite materials boasting enhanced magnetic properties.
  • [1]

    Went J, Rathenau G, Gorter E, Van Oosterhout G 1952 Phy. Rev. 86 424

    [2]

    Went J J, Rathenau G.W., Gorter E.W., Oosterhout G.W.V. 1952 Philips Tech. Rev. 13 194

    [3]

    Granados-Miralles C, Jenuš P 2021 J. Phys. D Appl. Phys. 54 303001

    [4]

    Coey J M D 2002 J. Magn. Magn. Mater. 248 441

    [5]

    Pullar R C 2012 Prog. Mater. Sci. 57 1191

    [6]

    Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821

    [7]

    de Julian Fernandez C, Sangregorio C, de la Figuera J, Belec B, Makovec D, Quesada A 2020 J. Phys. D Appl. Phys. 54 153001

    [8]

    Bollero A, Rial J, Villanueva M, Golasinski K M, Seoane A, Almunia J, Altimira R 2017 ACS Sustain. Chem. Eng. 5 3243

    [9]

    Iida K, Minachi Y, Masuzawa K, Kawakami M, Nishio H, Taguchi H 1999 J. Magn. Soc. Jpn. 23 1093

    [10]

    Coey J M 2014 J. Phys. Condens. Matter 26 064211

    [11]

    Cochardt A 1966 J. Appl. Phys. 37 1112

    [12]

    Taguchi H 1998 KONA Powder Part. J.16 116

    [13]

    Goldman A 2006 Modern ferrite technology (The USA:Springer Science&Business Media)

    [14]

    Went J 1952 Philips Tech. Rev. 13 361

    [15]

    Stuijts A, Rathenau G, Weber G 1954 Philips Tech. Rev. 16 209

    [16]

    Deshpande U S 2003 IEEE International Electric Machines and Drives Conference IEMDC'03 Madison, WI, USA, 01-04 June 2003 p509

    [17]

    Chen C H, Yi P 2014 Proceedings of 2014 International Conference on NdFeB Magnets:Supply Chain, Critical Properties,&Applications Ningbo, China, March 2nd to 5th 2014 p126

    [18]

    Tech-Mag T https://www.tdk.com/en/tech-mag/ferrite02/012#section3[2021-12-3]

    [19]

    Coey J M D 2020 Engineering 6 119

    [20]

    Bollero A, Palmero E M 2022 Modern Permanent Magnets chapter 3-Recent advances in hard-ferrite magnets (:Woodhead Publishing)

    [21]

    TDK https://product.tdk.com/en/system/files?file=dam/doc/product/magnet/magnet/ferrite/datasheets/magnet_fb_summary_en.pdf[2021-12-3]

    [22]

    Hitachi Metals L http://www.hitachi-metals.co.jp/e/products/auto/el/p03_01_g.html[2021-12-3]

    [23]

    TDK Ferrite Magnets Catalog https://product.tdk.com/en/products/magnet/magnet/ferrite/index.html[2021-12-3]

    [24]

    Weng X Y 2021 Advanced Materials Industry 4 32(in Chinese)[翁兴园2021新材料产业4 32]

    [25]

    华经产业研究https://baijiahao.baidu.com/s?id=1749074365467103880&wfr=spider&for=pc[2023-2-13]

    [26]

    Chen Y F, Xu B 2022 Journal of Magnetic Materials and Devices 54 108(in Chinese)[陈羽峰,徐斌2022磁性材料及器件54 108]

    [27]

    横店东磁特性表http://www.chinadmegc.com/products_newmaterial.php?1[2022-11-15]

    [28]

    北矿磁材科技有限公司-烧结永磁铁氧体磁粉http://www.magmat.com/cpysc/yctytcf/index.htm[2022-11-15]

    [29]

    江益磁材湿式异方性铁氧体永磁产品结构http://www.jpmf.com.cn/displayproduct.html?id=3806471777899840[2022-11-15]

    [30]

    安徽龙磁科技股份有限公司永磁铁氧体磁性能牌号表http://www.sinomagtech.com/product.php?class_id=108101[2022-11-15]

    [31]

    Hitachi catalogue http://www.hitachi-metals.co.jp/e/products/auto/el/p03_05.html[2022-11-15]

    [32]

    Weng X Y 2013 Advanced Materials Industry 4 31(in Chinese)[翁兴园2013新材料产业4 31]

    [33]

    Went J 1952 Philips Tech. Rev. 13 361

    [34]

    Smit B J, Wijn H P 1959 Ferrites, Philips technical library (The Netherlands:Eindhoven)

    [35]

    Aminoff G 1925 Geologiska Föreningen i Stockholm Förhandlingar 47 283

    [36]

    Adelsköld V 1938 Almqvist&Wiksell

    [37]

    Harris V G, Geiler A, Chen Y, Yoon S D, Wu M, Yang A, Chen Z, He P, Parimi P V, Zuo X, Patton C E, Abe M, Acher O, Vittoria C 2009 J. Magn. Magn. Mater. 321 2035

    [38]

    Kojima H 1982 Handb. Ferromagn. Mater. 3 305

    [39]

    Kreisel J, Vincent H, Tasset F, Paté M, Ganne J P 2001 J. Magn. Magn. Mater. 224 17

    [40]

    Townes W, Fang J, Perrotta A 1967 Z. Krist.-Cryst. Mater. 125 437

    [41]

    Braun P B 1957 Philips Res. Rep. 12 491

    [42]

    Bilovol V, Martínez-García R 2015 J. Phy. Chem. Solids 86 131

    [43]

    Harris V G 2012 IEEE T. Magn. 48 1075

    [44]

    Cullity B D, Graham C D 2011 Introduction to magnetic materials (The USA:John Wiley&Sons)

    [45]

    Jahn L, Müller H G 1969 Phys. Status Solidi B 35 723

    [46]

    Coey J M 2010 Magnetism and magnetic materials (The UK:Cambridge university press)

    [47]

    Stäblein H 1982 Handb. Ferromagn. Mater. 3 441

    [48]

    Cui J, Kramer M, Zhou L, Liu F, Gabay A, Hadjipanayis G, Balasubramanian B, Sellmyer D 2018 Acta Mater. 158 118

    [49]

    Selvaraj S, Gandhi U, Berchmans L J, Mangalanathan U 2021 Mater. Tech. 36 36

    [50]

    Waki T 2022 J. Jpn. Soc. Powder Powder Metall.(in Japanese)69 149

    [51]

    Mahmood S H, Abu-Aljarayesh I 2016 Hexaferrite permanent magnetic materials (Materials Research Forum LLC)

    [52]

    Lisjak D, Mertelj A 2018 Prog. Mater. Sci. 95 286

    [53]

    Rhein F, Helbig T, Neu V, Krispin M, Gutfleisch O 2018 Acta Mater. 146 85

    [54]

    Trukhanov A V, Kostishyn V G, Panina L V, Jabarov S H, Korovushkin V V, Trukhanov S V, Trukhanova E L 2017 Ceram. Int. 43 12822

    [55]

    Trukhanov S V, Trukhanov A V, Turchenko V A, Kostishyn V G, Panina L V, Kazakevich I S, Balagurov A M 2016 J. Alloy Compd. 689 383

    [56]

    Li J, Hong Y, He S, Li W K, Bai H, Xia Y H, Sun G A, Zhou Z X 2022 J. Adv. Ceram. 11 263

    [57]

    Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168195

    [58]

    Albanese G, Deriu A 1979 Ceram. Int. 5 3

    [59]

    Dionne G F 2009 Magnetic oxides (The USA:Springer)

    [60]

    Summergrad R N, Banks E 1957 J. Phys. Chem. Solids 2 312

    [61]

    Le Roux D, Vincent H, Joubert J C, Vallet-Regi M 1988 Mater. Res. Bull. 23 299

    [62]

    Ogata Y, Kubota Y, Takami T, Tokunaga M, Shinokara T 1999 IEEE T. Magn. 35 3334

    [63]

    Tenaud P, Morel A, Kools F, Le Breton J M, Lechevallier L 2004 J. Alloy Compd. 370 331

    [64]

    Kools F, Morel A, Grössinger R, Le Breton J M, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1270

    [65]

    Nishio H, Minachi Y, Yamamoto H 2009 IEEE T. Magn. 45 5281

    [66]

    Kikuchi T, Nakamura T, Yamasaki T, Nakanishi M, Fujii T, Takada J, Ikeda Y 2010 J. Magn. Magn. Mater. 322 2381

    [67]

    Nishio H, Yamamoto H 2011 IEEE T. Magn. 47 3641

    [68]

    Kobayashi Y, Hosokawa S, Oda E, Toyota S 2008 J. Jpn. Soc. Powder Powder Metall. 55 541

    [69]

    Du Y, Liu Y, Lian L, Du J 2019 J. Magn. Magn. Mater. 469 189

    [70]

    Chen Z, Wang F, Yan S, Nie Y, Feng Z, Chen Y, Harris V G, Zhang S 2014 J. Am. Ceram. Soc. 97 1873

    [71]

    Chen Z, Wang F, Yan S, Feng Z 2014 Mat. Sci. Eng. B 182 69

    [72]

    Zhu D, Geng Z, Liu R, Zhou X, Jia L, Hu G, Wang Q, Li B 2020 Rare Metals 39 89

    [73]

    Li X, Yang W, Bao D, Meng X, Lou B 2013 J. Magn. Magn. Mater. 329 1

    [74]

    Huang X, Liu X, Yang Y, Huang K, Niu X, Jin D, Gao S, Ma Y, Huang F, Lv F, Feng S 2015 J. Magn. Magn. Mater. 378 424

    [75]

    Yang Y, Wang F, Shao J, Huang D, Liu X, Feng S, Wen C 2015 J. Magn. Magn. Mater. 384 64

    [76]

    Kang Y M, Moon K S 2015 Ceram. Int. 41 12828

    [77]

    Lotgering F K 1974 J. Phys. Chem. Solids 35 1633

    [78]

    Deschamps A, Bertaut F 1957 Compt. Rend. 244 3069

    [79]

    Wang J F, Ponton C B, Harris I R 2001 J. Magn. Magn. Mater. 234 233

    [80]

    Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Magn. Magn. Mater. 269 192

    [81]

    Wang J F, Ponton C B, Grössinger R, Harris I R 2004 J. Alloys Compd. 369 170

    [82]

    Sharma P, Verma A, Sidhu R K, Pandey O P 2003 J. Alloys Compd. 361 257

    [83]

    Grossinger R, Kupferling M, Tellez Blanco J C, Wiesinger G, Muller M, Hilscher G, Pieper M W, Wang J F, Harris I R 2003 IEEE T. Magn. 39 2911

    [84]

    Mocuta H, Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Alloys Compd. 364 48

    [85]

    Wang J F, Ponton C B, Harris I R 2005 J. Alloys Compd. 403 104

    [86]

    Ounnunkad S 2006 Solid State Commun. 138 472

    [87]

    Litsardakis G, Manolakis I, Efthimiadis K 2007 J Alloys Compd. 427 194

    [88]

    Lechevallier L, Le Breton J M, Morel A, Tenaud P 2008 J. Phys. Condens. Mat. 20 175203

    [89]

    Seifert D, Töpfer J, Stadelbauer M, Grössinger R, Le Breton J-M 2011 J. Am. Ceram. Soc. 94 2109

    [90]

    Waki T, Inoue G, Tabata Y, Nakamura H 2020 IEEE T. Magn. 56 1

    [91]

    Lucchini E, Slokar G 1980 J. Magn. Magn. Mater. 21 93

    [92]

    Blanco A M, Gonzalez C 1991 J. Phys. D Appl. Phys. 24 612

    [93]

    Lechevallier L, Le Breton J M, Morel A, Tenaud P 2007 J. Magn. Magn. Mater. 316 e109

    [94]

    Chlan V, Kouřil K, Uličná K, Štěpánková H, Töpfer J, Seifert D 2015 Phys. Rev. B 92 125125

    [95]

    Sauer C, Köbler U, Zinn W, Stäblein H 1978 J. Phys. Chem. Solids 39 1197

    [96]

    Le Breton J-M, Seifert D, Töpfer J, Lechevallier L 2015 Phys. B Condens. Mat. 470 33

    [97]

    Lechevallier L, Le Breton J M, Teillet J, Morel A, Kools F, Tenaud P 2003 Phys. B Condens. Mat. 327 135

    [98]

    Graetsch H, Leckebusch R, Sahl K, Haberey F, Rosenberg M S 1984 IEEE T. Magn. 20 495

    [99]

    Lee H B, Chun S H, Shin K W, Jeon B G, Chai Y S, Kim K H, Schefer J, Chang H, Yun S N, Joung T Y, Chung J H 2012 Phys. Rev. B 86 094435

    [100]

    Pieper M W, Morel A, Kools F 2002 J. Magn. Magn. Mater. 242-245 1408

    [101]

    Pieper M W, Kools F, Morel A 2002 Phys. Rev. B 65 184402

    [102]

    Morel A, Le Breton J M, Kreisel J, Wiesinger G, Kools F, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1405

    [103]

    Le Breton J M, Teillet J, Wiesinger G, Morel A, Kools F, Tenaud P 2002 IEEE T. Magn. 38 2952

    [104]

    Wiesinger G, Mller M, Grssinger R, Pieper M, Morel A, Kools F, Tenaud P, Le Breton J M, Kreisel J 2002 Phys. Status Solidi A 189 499

    [105]

    Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Phys. Condens. Mat. 16 5359

    [106]

    Choi D H, Lee S W, Shim I-B, Kim C S 2006 J. Magn. Magn. Mater. 304 e243

    [107]

    Kobayashi Y, Oda E, Nishiuchi T, Nakagawa T 2011 J. Ceram. Soc. Jpn. 119 285

    [108]

    Langhof N, Göbbels M 2009 J. Solid State Chem. 182 2725

    [109]

    Kouřil K 2013 Ph. D. Dissertation (Prague:Charles University)

    [110]

    Wu C, Yu Z, Yang Y, Sun K, Guo R, Jiang X, Lan Z 2015 J. Appl. Phys. 118 103907

    [111]

    Ohtsuka M, Muto S, Tatsumi K, Kobayashi Y, Kawata T 2016 Microscopy 65 127

    [112]

    Mahadevan S, Sathe V, Raghavendra Reddy V, Sharma P 2020 IEEE T. Magn. 56 1

    [113]

    Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Kobayashi H 2016 Hyperfine Interact. 237 1

    [114]

    Oura M, Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Hiraoka N, Kobayashi H 2018 J. Appl. Phys. 123 033907

    [115]

    Sakai H, Hattori T, Tokunaga Y, Kambe S, Ueda H, Tanioku Y, Michioka C, Yoshimura K, Takao K, Shimoda A, Waki T, Tabata Y, Nakamura H 2018 Phys. Rev. B 98 064403

    [116]

    Nakamura H, Waki T, Tabata Y, Mény C 2019 J. Phys. Mater. 2 015007

    [117]

    Nagasawa N, Oura M, Ikeda S, Waki T, Tabata Y, Nakamura H, Kobayashi H 2020 J. Appl. Phys. 128 133901

    [118]

    Balbashov A M, Egorov S K 1981 J. Cryst. Growth 52 498

    [119]

    Morishita H, Amano A, Ueda H, Michioka C, Yoshimura K 2014 J. Jpn. Soc. Powder Powder Metall. 61 S64

    [120]

    Gambino R J, Leonhard F 1961 J. Am. Ceram. Soc. 44 221

    [121]

    Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294

    [122]

    Goto Y, Takahashi K 1972 J. Ceram. Soc. Jpn. 80 358

    [123]

    Obradors X, Solans X, Collomb A, Samaras D, Rodriguez J, Pernet M, Font-Altaba M 1988 J. Solid State Chem. 72 218

    [124]

    Vinnik D A, Tarasova A Y, Zherebtsov D A, Gudkova S A, Galimov D M, Zhivulin V E, Trofimov E A, Nemrava S, Perov N S, Isaenko L I, Niewa R 2017 Materials 10 578

    [125]

    Vinnik D A, Gudkova S A, Zherebtsov D A, Trofimov E A, Mashkovtseva L S, Trukhanov A V, Trukhanov S V, Nemrava S, Blaschkowski B, Niewa R 2019 J. Magn. Magn. Mater. 470 97

    [126]

    Vincent H, Sugg B, Lefez V, Bochu B, Boursier D, Chaudouet P 1991 J.Magn. Magn. Mater. 101 170

    [127]

    Takaoka H, Suito H 1994 J. Cryst. Growth 137 493

    [128]

    Eraky M R, Beslepkin A A, Kuntsevich S P 2003 Mater. Lett. 57 3427

    [129]

    Jalli J, Yang-Ki H, Sung-Hoon G, Seok B, Jaejin L, Sur J C, Abo G S, Lyle A, Sung-Ik L, Hwachol L, Mewes T 2008 IEEE T. Magn. 44 2978

    [130]

    Pavlova S G, Balbashov A M, Rybina L N 2012 J. Cryst. Growth 351 161

    [131]

    Vinnik D A, Zherebtsov D A, Mashkovtseva L S, Nemrava S, Semisalova A S, Galimov D M, Gudkova S A, Chumanov I V, Isaenko L I, Niewa R 2015 J. Alloys Compd. 628 480

    [132]

    Shlyk L, Vinnik D A, Zherebtsov D A, Hu Z, Kuo C Y, Chang C F, Lin H J, Yang L Y, Semisalova A S, Perov N S, Langer T, Pöttgen R, Nemrava S, Niewa R 2015 Solid State Sci. 50 23

    [133]

    Vinnik D A, Tarasova A Y, Zherebtsov D A, Mashkovtseva L S, Gudkova S A, Nemrava S, Yakushechkina A K, Semisalova A S, Isaenko L I, Niewa R 2015 Ceram. Int. 41 9172

    [134]

    Vinnik D A, Zherebtsov D A, Mashkovtseva L S, Nemrava S, Yakushechkina A K, Semisalova A S, Gudkova S A, Anikeev A N, Perov N S, Isaenko L I, Niewa R 2015 Mater. Chem. Phys. 155 99

    [135]

    Vinnik D A, Semisalova A S, Mashkovtseva L S, Yakushechkina A K, Nemrava S, Gudkova S A, Zherebtsov D A, Perov N S, Isaenko L I, Niewa R 2015 Mater. Chem. Phys. 163 416

    [136]

    Gudkova S A, Vinnik D A, Zhivulin V E, Chernukha A S, Zherebtsov D A, Trofimov E A, Trukhanov A V, Trukhanov S V, Kalandija M, Semisalova A S, Perov N S, Senin A V, Zabeivorota N S, Mikhailov G G 2019 J. Magn. Magn. Mater. 470 101

    [137]

    Hassner M, Vinnik D A, Niewa R 2020 Materials 13 858

    [138]

    Vinnik D A, Prosvirin I P, Zhivulin V E, Wang N, Jiang X, Trofimov E A, Zaitseva O V, Gudkova S A, Nemrava S, Zherebtsov D A, Niewa R, Atuchin V V, Lin Z 2020 J. Alloys Compd. 844 156036

    [139]

    Zhivulin V E, Trofimov E A, Zaitseva O V, Zherebtsov D A, Uchaev D A, Vinnik D A 2020 Crystals 10 264

    [140]

    Shimoda A, Takao K, Uji K, Waki T, Tabata Y, Nakamura H 2016 J. Solid State Chem. 239 153

    [141]

    Liu R, Wang L, Xu Z, Qin C, Li Z, Yu X, Liu D, Gong H, Zhao T, Sun J, Hu F, Shen B 2022 Mater. Today Commun.32 103996

    [142]

    Ueda H, Tanioku Y, Michioka C, Yoshimura K 2017 Phys. Rev. B 95 224421

    [143]

    Waki T, Okazaki S, Tabata Y, Kato M, Hirota K, Nakamura H 2018 Mater. Res. Bull. 104 87

    [144]

    Waki T, Uji K, Tabata Y, Nakamura H 2019 J Solid State Chem. 270 366

    [145]

    Waki T, Takao K, Tabata Y, Nakamura H 2020 J. Solid State Chem. 282 121071

    [146]

    Waki T, Hani K, Tabata Y, Nakamura H 2023 Mater. Trans. 64 564

    [147]

    Küpferling M, Novák P, Knížek K, Pieper M W, Grössinger R, Wiesinger G, Reissner M 2005 J. Appl. Phys. 97 10

    [148]

    Kim S-D, Kim J-S 2006 J. Magn. Magn. Mater. 307 295

    [149]

    Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K 2019 Phys. Rev. B 100 094406

    [150]

    Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K, Nakano K, Yamamoto K 2020 J. Magn. Magn. Mater. 498 166115

    [151]

    Liu R, Wang L, Yu X, Xu Z, Gong H, Zhao T, Hu F, Shen B 2023 Ceram. Int. 49 1888

    [152]

    Williams J M, Adetunji J, Gregori M 2000 J. Magn. Magn. Mater. 220 124

    [153]

    Kobayashi Y, Oda E, Nakagawa T, Nishiuchi T 2016 J. Jpn. Soc. Powder Powder Metall. 63 101

    [154]

    Kobayashi Y, Oda E, Kawata T, Nakagawa T 2017 Hitachi Metal Tech. Rev. 33 34(in Japanese)

    [155]

    Nakamura H, Shimoda A, Waki T, Tabata Y, Meny C 2016 J. Phys. Condens Mat. 28 346002

    [156]

    Nishikubo T, Motizuki K 1962 J. Phys. Soc. Jpn. 17 871

    [157]

    Tsuda T, Okada K, Yasuoka H 1974 J. Phys. Soc. Jpn. 37 1713

    [158]

    Jung H, Lee S J, Song M, Lee S, Lee H J, Kim D H, Kang J S, Zhang C L, Cheong S W 2009 New J. Phys. 11 043008

    [159]

    Miyatani K, Kohn K, Kamimura H, Iida S 1966 J. Phys. Soc. Jpn. 21 464

    [160]

    Itoh M, Nawata Y, Kiyama T, Akahoshi D, Fujiwara N, Ueda Y 2003 Phys. B Condens. Mat. 329 751

    [161]

    Ghoshray A, Bandyopadhyay B, Ghoshray K, Morchshakov V, Bärner K, Troyanchuk I O, Nakamura H, Kohara T, Liu G Y, Rao G H 2004 Phys. Rev. B 69 064424

    [162]

    Julien M H, de Vaulx C, Mayaffre H, Berthier C, Horvatić M, Simonet V, Wooldridge J, Balakrishnan G, Lees M R, Chen D P, Lin C T, Lejay P 2008 Phys. Rev. Let. 100 096405

    [163]

    Park J, Hong Y-K, Lee W, Choi B-C, Choi C-J 2016 IEEE Magn. Lett. 7 1

    [164]

    Dixit V, Kim S-G, Park J, Hong Y-K 2017 AIP Adv. 7 115209

    [165]

    Hui Y, Cheng W, Lin G, Miao X 2014 IEEE T. Magn. 50 1

    [166]

    Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257

    [167]

    Ravindran P, Delin A, James P, Johansson B, Wills J, Ahuja R, Eriksson O 1999 Phys. Rev. B 59 15680

    [168]

    Feng M, Shao B, Wu J, Zuo X 2013 J. Appl. Phys. 113 17

    [169]

    Ahn K, Ryu B, Korolev D, Jae Kang Y 2013 Appl. Phys. Lett. 103 242417

    [170]

    Halilov S, Perlov A Y, Oppeneer P, Yaresko A, Antonov V 1998 Phys. Rev. B 57 9557

    [171]

    Jiang Y W 2020 M.S. Dissertation (Chengdu:University of Electronic Science and Technology of China)(in Chinese)[蒋有为2020硕士学位论文(成都:电子科技大学)]

    [172]

    Inoue J, Onoda H, Yanagihara H 2020 J. Phys. D Appl. Phys. 53 195003

    [173]

    Inoue J, Nakamura H, Yanagihara H 2019 T. Magn. Soc. Jpn.(Special Issues)3 12

  • [1] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, doi: 10.7498/aps.64.197501
    [2] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, doi: 10.7498/aps.64.097501
    [3] 郝延明, 王玲玲, 严达利, 安力群. 电弧炉制备的Sm2Fe17-xCrx化合物的结构与磁性. 物理学报, doi: 10.7498/aps.58.7222
    [4] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, doi: 10.7498/aps.56.1121
    [5] 王文全, 徐世峰, 徐钦英, 张文梁, 陈东风. (Nd1-xGdx)3Fe27.31Ti1.69化合物的结构和磁性. 物理学报, doi: 10.7498/aps.55.3531
    [6] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. (Nd1-xErx)3Fe25Cr4.0(0≤x≤1.0) 化合物的结构与磁性. 物理学报, doi: 10.7498/aps.54.2176
    [7] 郭光华, 张海贝. 化合物HoMn6Sn6的磁晶各向异性及自旋重取向相变研究. 物理学报, doi: 10.7498/aps.54.5879
    [8] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究. 物理学报, doi: 10.7498/aps.53.2352
    [9] 王文全, 闫 羽, 王学凤, 苏 峰, 王向群, 金汉民. RCo12-xTix(R=Y,Sm)化合物的结构与磁性研究. 物理学报, doi: 10.7498/aps.52.150
    [10] 王文全, 闫 羽, 王向群, 王学凤, 金汉民. (Nd1-xErx)3Fe273Ti17化合物的结构与磁性. 物理学报, doi: 10.7498/aps.52.641
    [11] 王文全, 闫 羽, 王向群, 王学凤, 苏 峰, 金汉民. Gd3Co29-xCrx新相化合物的结构与磁性. 物理学报, doi: 10.7498/aps.52.647
    [12] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, doi: 10.7498/aps.51.1128
    [13] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, doi: 10.7498/aps.51.2320
    [14] 冯全源. 高取向度的毫米波锶钙六角多晶铁氧体. 物理学报, doi: 10.7498/aps.51.2612
    [15] 王维, 张锡娟, 杨翠红, 成海英. 强磁场下Er2Ga5O12的磁晶各向异性. 物理学报, doi: 10.7498/aps.51.2846
    [16] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. 3∶29型Gd3(Fe1-xCox)29-yCry化合物的成相与结构. 物理学报, doi: 10.7498/aps.50.1534
    [17] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性. 物理学报, doi: 10.7498/aps.50.752
    [18] 胡社军, 特古斯, 魏兴钊, 张雷, 曾德长, 刘正义, F.R.deBoer, K.H.J.Buschow. Ho2(Co,Si)17化合物的结构与磁晶各向异性. 物理学报, doi: 10.7498/aps.49.355
    [19] 关鹏, 刘宜华, 郭贻诚. Co-Zr非晶薄膜的磁感生各向异性. 物理学报, doi: 10.7498/aps.38.2029
    [20] 徐游, 杨桂林, 蔡衡, 翟宏如. W型六角铁氧体的磁晶各向异性. 物理学报, doi: 10.7498/aps.34.901
计量
  • 文章访问数:  129
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-28

/

返回文章
返回