搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强关联电子相变氧化物材料及多场调控研究

周轩弛 李海帆

引用本文:
Citation:

强关联电子相变氧化物材料及多场调控研究

周轩弛, 李海帆

Research on the regulation of electronic phase transitions for correlated oxides by using multiple fields

Xuan Chi-Zhou, Hai Fan-Li
PDF
导出引用
  • 外场激励通过调控强关联氧化物中自由度间的关联耦合作用, 触发其发生多重莫特电子相变和轨道重构, 在强关联电子相变氧化物体系中发现了丰富的新奇物性和量子转变, 为构筑新型类脑神经元逻辑器件、磁电耦合器件及能量转换器件奠定基础, 引起了凝聚态物理领域的广泛关注. 本工作系统地回顾了国内外科研团队在强关联氧化物电子相变特性多场调控领域的研究进展, 旨在凸显离子、应力场和栅极电场等新型功能调控自由度在强关联氧化物电子相变特性调控和新型功能特性设计中的关键作用, 阐明强关联氧化物中微观自由度的关联耦合作用对其宏观关联电子相变特性的基础调控规律, 为实现强关联氧化物电子相变特性的可控设计与精准调控提供理论依据, 期望利用多物理场的调控作用在强关联电子相变氧化物材料体系中发现更多的新物理、新物性、新器件和新应用.
    External-field-triggered multiple electronic phase transitions within correlated oxides open up a new paradigm to explore exotic physical functionalities and new quantum transitions via regulating the electron correlations and the interplay in the degrees of freedom. This enables the promising applications in the multidisciplinary field of neuromorphic computing, magnetoelectric coupling, smart windows, bio-sensing and energy conversion. Herein, this review delivers a comprehensive picture of regulating the electronic phase transitions for correlated oxides via multi-field covering the VO2, ReNiO3 and etc., thus highlighting the critical role of external field in exploring the exotic physical property and designing new quantum states. Beyond conventional semiconductors, the complicated interplay in the charge, lattice, orbital and spin degrees of freedom within correlated oxides triggers abundant correlated physical functionalities that are rather susceptible to the external field. For example, hydrogen-associated electron doping Mottronics enables the possibility in discovering new electronic phase and magnetic ground states within the hydrogen-related phase diagram of correlated oxides. In addition, filling-controlled Mottronics by using hydrogenation triggers multiple orbital reconfigurations for correlated oxides away from the correlated electron ground state that results in new quantum transitions via directly manipulating the d-orbital configuration and occupation, such as unconventional Ni-based superconductivity. The transition metals of correlated oxides are generally substituted by dopants to effectively adjust the electronic phase transitions via introducing the carrier doping and/or lattice strain. Imparting an interfacial strain to correlated oxides introduces an additional freedom to manipulate the electronic phase transition via distorting the lattice framework, owing to the interplay between charge and lattice degrees of freedom. In recent years, the polarization field associated to BiFeO3 or PMN-PT material as triggered by a cross-plane electric field was used to adjust the electronic phase transition of correlated oxides that enriches the promising the correlated electronic devices. The exotic physical phenomenon as discovered in the correlated oxides originates from the non-equilibrium states that are triggered by imparting external fields. Nevertheless, the underneath mechanism as associated to the regulation in the electronic phase transitions of correlated oxides is still in a long-standing puzzle, owing to the strong correlation effect. As a representative case, hydrogen-associated Mottronic transitions introduces an additional ion degree of freedom to the correlated oxides that is rather difficult to be decoupled within correlated system. In addition, from the perspective of material synthesis, the abovementioned correlated oxides are expected to be compatible to conventional semiconducting process, by which the prototypical correlated electronic devices can be largely developed. The key point that accurately adjusts and designs the electronic phase transitions for correlated oxides via external fields is associated to clarify the basic relationship between the microscopic degrees of freedom and macroscopic correlated physical properties. On the basis, the multiple electronic phase transitions as triggered by external field within correlated oxides provide new guidance for designing new functionality and interdisciplinary device applications.
  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Li L L, Wang M, Zhou Y D, Zhang Y, Zhang F, Wu Y S, Wang Y J, Lyu Y J, Lu N P, Wang G P, Peng H N, Shen S C, Du Y G, Zhu Z H, Nan C W, Yu P 2022 Nat. Mater. 21 1246

    [3]

    Lu N, Zhang Z, Wang Y, Li H-B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C-W, Wu J, Yu P 2022 Nat. Energy 7 1208

    [4]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 2316536

    [5]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078

    [6]

    Wang S, Jiang T, Meng Y, Yang R, Tan G, Long Y 2021 Science 374 1501

    [7]

    Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C-Y, Grigoropoulos C P, Javey A, Urban J J, Yao J, Levinson R, Wu J 2021 Science 374 1504

    [8]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533

    [9]

    Lee D, Chung B, Shi Y, Kim G Y, Campbell N, Xue F, Song K, Choi S Y, Podkaminer J P, Kim T H, Ryan P J, Kim J W, Paudel T R, Kang J H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B 2018 Science 362 1037

    [10]

    Lao B, Zheng X, Li S, Wang Z-M 2023 Acta Phys. Sin. 72 097702

    [11]

    Zhou X, Wu Y, Yan F, Zhang T, Ke X, Meng K, Xu X, Li Z, Miao J, Chen J, Jiang Y 2021 Ceram. Int. 47 25574

    [12]

    Gao L, Wang H, Meng F, Peng H, Lyu X, Zhu M, Wang Y, Lu C, Liu J, Lin T, Ji A, Zhang Q, Gu L, Yu P, Meng S, Cao Z, Lu N 2023 Adv. Mater. 2300617

    [13]

    Chen J K, Mao W, Ge B H, Wang J, Ke X Y, Wang V, Wang Y P, Dobeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694

    [14]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68

    [15]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231

    [16]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838

    [17]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [18]

    Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, Qiao L 2023 Nature 615 50

    [19]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D-X, Zhang G-M, Wang M 2023 Nature 621 493

    [20]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124

    [21]

    Aetukuri N B, Gray A X, Drouard M, Cossale M, Gao L, Reid A H, Kukreja R, Ohldag H, Jenkins C A, Arenholz E, Roche K P, Dürr H A, Samant M G, Parkin S S P 2013 Nat. Phys. 9 661

    [22]

    Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y 2023 Chem. Rev. 123 7025

    [23]

    Yajima T, Nishimura T, Toriumi A 2015 Nat. Commun. 6 10104

    [24]

    Victor J-L, Gaudon M, Salvatori G, Toulemonde O, Penin N, Rougier A 2021 J. Phys. Chem. Lett. 12 7792

    [25]

    Suleiman A O, Mansouri S, Margot J, Chaker M 2022 Appl. Surf. Sci. 571 151267

    [26]

    Sakai E, Yoshimatsu K, Shibuya K, Kumigashira H, Ikenaga E, Kawasaki M, Tokura Y, Oshima M 2011 Phys. Rev. B 84 195132

    [27]

    Liu K, Lee S, Yang S, Delaire O, Wu J 2018 Mater. Today 21 875

    [28]

    Li H F, Meng F Q, Bian Y, Zhou X C, Wang J U, Xu X G, Jiang Y, Chen N F, Chen J K 2023 J. Mater. Sci. Technol. 148 235

    [29]

    Li H F, Wang Y Z, Zhang H, Fang X H, Zhou X C, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2022 Appl. Phys. Lett. 121 253901

    [30]

    Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N 2020 J. Mater. Chem. A 8 13630

    [31]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys 81 046501

    [32]

    Catalan G 2008 Phase Transit. 81 729

    [33]

    Chen J 2023 Chin. Sci. Bull. 68 100

    [34]

    Markiewicz E, Bujakiewicz-Koronska R, Budziak A, Kalvane A, Nalecz D M 2014 Phase Transit. 87 1060

    [35]

    Kozlenko D P, Belik A A, Kichanov S E, Mirebeau I, Sheptyakov D V, Strässle T, Makarova O L, Belushkin A V, Savenko B N, Takayama-Muromachi E 2010 Phys. Rev. B 82 014401

    [36]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [37]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A Nat. Phys.

    [38]

    Yajima T, Nishimura T, Toriumi A 2017 Small 13 1603113

    [39]

    Asayesh-Ardakani H, Nie A M, Marley P M, Zhu Y H, Phillips P J, Singh S, Mashayek F, Sambandamurthy G, Low K B, Klie R F, Banerjee S, Odegard G M, Shahbazian-Yassar R 2015 Nano Lett. 15 7179

    [40]

    Zhou J Y, Xie M Z, Cui A Y, Zhou B, Jiang K, Shang L Y, Hu Z G, Chu J H 2018 ACS Appl. Mater. Interfaces 10 30548

    [41]

    Rao C N R, Natarajan M, Subba Rao G V, Loehman R E 1971 J. Phys. Chem. Solids 32 1147

    [42]

    Zhou X, Cui Y, Shang Y, Li H, Wang J, Meng Y, Xu X, Jiang Y, Chen N, Chen J 2023 J. Phys. Chem. C 127 2639

    [43]

    Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J 2023 Phys. Chem. Chem. Phys. 25 21908

    [44]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974

    [45]

    Chen Y L, Wang Z W, Chen S, Ren H, Wang L X, Zhang G B, Lu Y L, Jiang J, Zou C W, Luo Y 2018 Nat. Commun. 9 818

    [46]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113

    [47]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J-M 2010 Adv. Mater. 22 5517

    [48]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860

    [49]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [50]

    Li H B, Lou F, Wang Y J, Zhang Y, Zhang Q H, Wu D, Li Z L, Wang M, Huang T T, Lyu Y J, Guo J W, Chen T Z, Wu Y, Arenholz E K, Lu N P, Wang O R D, He Q, Gu L, Zhu J, Nan C W, Zhong X Y, Xiang H J, Yu P 2019 Adv. Sci. 6 1901432

    [51]

    Park J, Yoon H, Sim H, Choi S Y, Son J 2020 ACS Nano 14 2533

    [52]

    Ji H, Wang S, Zhou G, Zhou X, Dou J, Kang P, Chen J, Xu X 2024 Phys. Chem. Chem. Phys. 26 5907

    [53]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416

    [54]

    Wang M, Sui X L, Wang Y J, Juan Y H, Lyu Y J, Peng H N, Huang T T, Shen S C, Guo C G, Zhang J B, Li Z L, Li H B, Lu N P, N'Diaye A T, Arenholz E, Zhou S Y, He Q, Chu Y H, Duan W H, Yu P 2019 Adv. Mater. 31 1900458

    [55]

    Li Z, Lyu Y, Ran Z, Wang Y, Zhang Y, Lu N, Wang M, Sassi M, Ha T D, T. N'Diaye A, Shafer P, Pearce C, Rosso K, Arenholz E, Juang J-Y, He Q, Chu Y-H, Luo W, Yu P 2023 Adv. Funct. Mater. 2212298

    [56]

    Wang Q, Gu Y, Chen C, Han L, Fayaz M U, Pan F, Song C 2024 ACS Appl. Mater. Interfaces 16 3726

    [57]

    Zhou X, Shang Y, Gu Z, Jiang G, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N, Chen J 2024 Appl. Phys. Lett. 124 082103

    [58]

    Hong B, Yang Y, Hu K, Dong Y, Zhou J, Zhang Y, Zhao W, Luo Z, Gao C 2019 Appl. Phys. Lett. 115 251605

    [59]

    Zhang Z, Sun Y, Zhang H-T 2022 J. Appl. Phys. 131 120901

    [60]

    Zhi B, Gao G, Xu H, Chen F, Tan X, Chen P, Wang L, Wu W 2014 ACS Appl. Mater. Interfaces 6 4603

    [61]

    Salev P, del Valle J, Kalcheim Y, Schuller I K 2019 P Natl. Acad. Sci. USA 116 8798

    [62]

    Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228

    [63]

    Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437

    [64]

    Baldini M, Postorino P, Malavasi L, Marini C, Chapman K W, Mao H-k 2016 Phys. Rev. B 93 245137

    [65]

    Gavriliuk A G, Trojan I A, Struzhkin V V 2012 Phys. Rev. Lett. 109 086402

    [66]

    Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao H-K 2020 Adv. Funct. Mater. 30 2000987

    [67]

    Xue W H, Liu G, Zhong Z C, Dai Y H, Shang J, Liu Y W, Yang H L, Yi X H, Tan H W, Pan L, Gao S, Ding J, Xu X H, Li R W 2017 Adv. Mater. 29 1702162

    [68]

    Sun X-N, Qu Z-M, Wang Q-G, Yuan Y, Liu S-H 2019 Acta Phys. Sin. 68 107201

    [69]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Engel-Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109

    [70]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S P 2013 Science 339 1402

    [71]

    Chen J K, Mao W, Gao L, Yan F B, Yajima T, Chen N F, Chen Z Z, Dong H L, Ge B H, Zhang P, Cao X Z, Wilde M, Jiang Y, Terai T, Shi J 2020 Adv. Mater. 32 1905060

    [72]

    Li H, Wang Y, Li H, Yan F, Ge B, Zhang J, Chen N, Chen J 2022 ACS Appl. Electron. Mater. 4 4873

    [73]

    Hu F X, Gao J 2006 Appl. Phys. Lett. 88

    [74]

    Sharma Y, Balachandran J, Sohn C, Krogel J T, Ganesh P, Collins L, Ievlev A V, Li Q, Gao X, Balke N, Ovchinnikova O S, Kalinin S V, Heinonen O, Lee H N 2018 ACS Nano 12 7159

    [75]

    Zhang Z, Mondal S, Mandal S, Allred J M, Aghamiri N A, Fali A, Zhang Z, Zhou H, Cao H, Rodolakis F, McChesney J L, Wang Q, Sun Y, Abate Y, Roy K, Rabe K M, Ramanathan S 2021 P Natl. Acad. Sci. USA 118 e2017239118

    [76]

    Schrecongost D, Aziziha M, Zhang H-T, Tung I C, Tessmer J, Dai W, Wang Q, Engel-Herbert R, Wen H, Picard Y N, Cen C 2019 Adv. Funct. Mater. 29 1905585

    [77]

    Lee Y J, Hong K, Na K, Yang J, Lee T H, Kim B, Bark C W, Kim J Y, Park S H, Lee S, Jang H W 2022 Adv. Mater. 34 2203097

    [78]

    Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H, Muraoka Y 2020 Nat. Commun. 11 3591

    [79]

    Li G, Xie D, Zhong H, Zhang Z, Fu X, Zhou Q, Li Q, Ni H, Wang J, Guo E-j, He M, Wang C, Yang G, Jin K, Ge C 2022 Nat. Commun. 13 1729

  • [1] 陈盛如, 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳. 钴氧化物中晶格与自旋的关联耦合效应研究. 物理学报, doi: 10.7498/aps.72.20230206
    [2] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展. 物理学报, doi: 10.7498/aps.72.20222266
    [3] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, doi: 10.7498/aps.71.20221765
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220627
    [5] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, doi: 10.7498/aps.70.20201237
    [6] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, doi: 10.7498/aps.70.20210830
    [7] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, doi: 10.7498/aps.68.20191450
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, doi: 10.7498/aps.67.20181372
    [9] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, doi: 10.7498/aps.67.20182007
    [10] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, doi: 10.7498/aps.67.20180343
    [11] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, doi: 10.7498/aps.67.20180835
    [12] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展. 物理学报, doi: 10.7498/aps.65.047201
    [13] 杜永平, 刘慧美, 万贤纲. 5d过渡金属氧化物中的奇异量子物性研究. 物理学报, doi: 10.7498/aps.64.187201
    [14] 赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生. 0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究. 物理学报, doi: 10.7498/aps.64.136102
    [15] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, doi: 10.7498/aps.59.7857
    [16] 彭振生, 唐永刚, 严国清, 郭焕银, 毛 强. La0.67Sr0.08Na0.25MnO3的奇特输运性质及CMR效应. 物理学报, doi: 10.7498/aps.56.1707
    [17] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为. 物理学报, doi: 10.7498/aps.55.4912
    [18] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象. 物理学报, doi: 10.7498/aps.47.300
    [19] 胡文英, 曾雉, 郑庆祺, 黄美纯. 电子间关联作用对过渡金属氧化物磁矩的影响. 物理学报, doi: 10.7498/aps.44.273
    [20] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究. 物理学报, doi: 10.7498/aps.43.1672
计量
  • 文章访问数:  158
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-09

/

返回文章
返回