搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究

邓杨 王如志 徐利春 房慧 严辉

立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究

邓杨, 王如志, 徐利春, 房慧, 严辉
PDF
导出引用
导出核心图
  • 采用基于密度泛函理论(DFT)的第一性原理计算研究了 (Ba0.5Sr0.5)TiO3 (BST) 晶体在高压下的电子结构及能带变化行为. 研究结果发现,随着压强的增加,BST能带间隙先增加,在压强为55 GPa时达到最大值,然后减小,这些有趣的结果将有助于开发与设计新的BST铁电器件. 进一步地,通过电子态密度和密度分布图的研究分析可知:在低压区域(0P55 GPa),带隙的增加是由于费米能级附近导带反键态的形成和价带成键态的形成共同作用的结果. 在高压区域(P55 GPa),则是出现的离域现象占主导(电子的离域作用超过键态的作用),从而使带隙减小.
    • 基金项目: 国家自然科学基金(批准号:11074017)、北京市 学术创新团队建设计划项目(批准号:PHR201007101)、北京市科技新星计划(批准号:2008B10)、北京市自然科学基金(批准号:1102006)和教育部留学回国人员科研启动基金资助的课题.
    [1]

    Akbas M A, Davies P K 1998 J. Am. Ceram. Soc. 81 670

    [2]
    [3]

    Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105

    [4]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D-Appl. Phys. 41 063001

    [5]
    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]
    [8]

    Guennou M, Bouvier P, Kreisel J, Machon D 2010 Phys. Rev. B 81 134101

    [9]
    [10]
    [11]

    Ganesh P, Cohen R E 2009 J. Phys. Condes. Matter 21 064225

    [12]

    Stengel M, Vanderbilt D, Spaldin N A 2009 Nat. Mater. 8 392

    [13]
    [14]

    He J P, Lu W Z, Wang X H 2009 Ferroelectrics 388 172

    [15]
    [16]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657

    [17]
    [18]
    [19]

    Zhu W H, Zhang X W, Zhu W, Xiao H M 2008 Phys. Chem. Chem. Phys. 10 7318

    [20]
    [21]

    Zhu J L, Jin C Q, Cao W W, Wang X H 2008 Appl. Phys. Lett. 92 242901

    [22]
    [23]

    Tse J S, Klug D D, Patchkovskii S, Ma Y M, Dewhurst J K 2006 J. Phys. Chem. B 110 3721

    [24]

    Lemanov V V, Smirnova E P, Syrnikov P P, Tarakanov E A 1996 Phys. Rev. B 54 3151

    [25]
    [26]
    [27]

    Menoret C, Kiat J M, Dkhil B, Dunlop M, Dammak H, Hernandez O 2002 Phys. Rev. B 65 224104

    [28]
    [29]

    Ostapchuk T, Petzelt J, Hlinka J, Bovtun V, Kuzel P, Ponomareva I, Lisenkov S, Bellaiche L, Tkach A, Vilarinho P 2009 J. Phys. Condes. Matter 21 474215

    [30]

    Wang Y X 2005 Solid State Commun. 135 290

    [31]
    [32]

    Wang Y X 2008 Phys. Status Solidi B-Basic Solid State Phys. 245 1147

    [33]
    [34]
    [35]

    Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G 2010 Phys. Rev. B 82 054115

    [36]

    Yang L, Ma Y M, Iitaka T, Tse J S, Stahl K, Ohishi Y, Wang Y, Zhang R W, Liu J F, Mao H K, Jiang J Z 2006 Phys. Rev. B 74 245209

    [37]
    [38]
    [39]

    Xiao W S, Tan D Y, Xiong X L, Liu J, Xu J A 2010 Proc. Natl. Acad. Sci. USA 107 14026

    [40]
    [41]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [42]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [43]
    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]
    [46]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [47]
    [48]

    Seo S S A, Lee H N 2009 Appl. Phys. Lett. 94 232904

    [49]
    [50]

    Johnston K, Huang X Y, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100103

    [51]
    [52]

    Jia C H, Chen Y H, Zhou X L, Yang A L, Zheng G L, Liu X L, Yang S Y, Wang Z G 2010 Appl. Phys. A-Mater. Sci. Process. 99 511

    [53]
    [54]

    Wang J, Xiang J H, Duo S W, Li W K, Li M S, Bai L Y 2009 J. Mater. Sci. Mater. Electron. 20 319

    [55]
    [56]
    [57]

    Chen W K, Cheng C M, Huang J Y, Hsieh W F, Tseng T Y 2000 J. Phys. Chem. Solids 61 969

    [58]
    [59]

    Cohen R E 1992 Nature 358 136

    [60]
    [61]

    Zhu W, Zhang X, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [62]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [63]
    [64]

    Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R 2008 J. Cryst. Growth 310 4132

    [65]
    [66]
    [67]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [68]
    [69]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2321

  • [1]

    Akbas M A, Davies P K 1998 J. Am. Ceram. Soc. 81 670

    [2]
    [3]

    Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105

    [4]

    Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D-Appl. Phys. 41 063001

    [5]
    [6]

    Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]
    [8]

    Guennou M, Bouvier P, Kreisel J, Machon D 2010 Phys. Rev. B 81 134101

    [9]
    [10]
    [11]

    Ganesh P, Cohen R E 2009 J. Phys. Condes. Matter 21 064225

    [12]

    Stengel M, Vanderbilt D, Spaldin N A 2009 Nat. Mater. 8 392

    [13]
    [14]

    He J P, Lu W Z, Wang X H 2009 Ferroelectrics 388 172

    [15]
    [16]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657

    [17]
    [18]
    [19]

    Zhu W H, Zhang X W, Zhu W, Xiao H M 2008 Phys. Chem. Chem. Phys. 10 7318

    [20]
    [21]

    Zhu J L, Jin C Q, Cao W W, Wang X H 2008 Appl. Phys. Lett. 92 242901

    [22]
    [23]

    Tse J S, Klug D D, Patchkovskii S, Ma Y M, Dewhurst J K 2006 J. Phys. Chem. B 110 3721

    [24]

    Lemanov V V, Smirnova E P, Syrnikov P P, Tarakanov E A 1996 Phys. Rev. B 54 3151

    [25]
    [26]
    [27]

    Menoret C, Kiat J M, Dkhil B, Dunlop M, Dammak H, Hernandez O 2002 Phys. Rev. B 65 224104

    [28]
    [29]

    Ostapchuk T, Petzelt J, Hlinka J, Bovtun V, Kuzel P, Ponomareva I, Lisenkov S, Bellaiche L, Tkach A, Vilarinho P 2009 J. Phys. Condes. Matter 21 474215

    [30]

    Wang Y X 2005 Solid State Commun. 135 290

    [31]
    [32]

    Wang Y X 2008 Phys. Status Solidi B-Basic Solid State Phys. 245 1147

    [33]
    [34]
    [35]

    Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G 2010 Phys. Rev. B 82 054115

    [36]

    Yang L, Ma Y M, Iitaka T, Tse J S, Stahl K, Ohishi Y, Wang Y, Zhang R W, Liu J F, Mao H K, Jiang J Z 2006 Phys. Rev. B 74 245209

    [37]
    [38]
    [39]

    Xiao W S, Tan D Y, Xiong X L, Liu J, Xu J A 2010 Proc. Natl. Acad. Sci. USA 107 14026

    [40]
    [41]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [42]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [43]
    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]
    [46]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [47]
    [48]

    Seo S S A, Lee H N 2009 Appl. Phys. Lett. 94 232904

    [49]
    [50]

    Johnston K, Huang X Y, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100103

    [51]
    [52]

    Jia C H, Chen Y H, Zhou X L, Yang A L, Zheng G L, Liu X L, Yang S Y, Wang Z G 2010 Appl. Phys. A-Mater. Sci. Process. 99 511

    [53]
    [54]

    Wang J, Xiang J H, Duo S W, Li W K, Li M S, Bai L Y 2009 J. Mater. Sci. Mater. Electron. 20 319

    [55]
    [56]
    [57]

    Chen W K, Cheng C M, Huang J Y, Hsieh W F, Tseng T Y 2000 J. Phys. Chem. Solids 61 969

    [58]
    [59]

    Cohen R E 1992 Nature 358 136

    [60]
    [61]

    Zhu W, Zhang X, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [62]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [63]
    [64]

    Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R 2008 J. Cryst. Growth 310 4132

    [65]
    [66]
    [67]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [68]
    [69]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2321

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4257
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-02-17
  • 刊出日期:  2011-11-15

立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究

  • 1. 北京工业大学材料科学与工程学院薄膜实验室,北京 100124
    基金项目: 

    国家自然科学基金(批准号:11074017)、北京市 学术创新团队建设计划项目(批准号:PHR201007101)、北京市科技新星计划(批准号:2008B10)、北京市自然科学基金(批准号:1102006)和教育部留学回国人员科研启动基金资助的课题.

摘要: 采用基于密度泛函理论(DFT)的第一性原理计算研究了 (Ba0.5Sr0.5)TiO3 (BST) 晶体在高压下的电子结构及能带变化行为. 研究结果发现,随着压强的增加,BST能带间隙先增加,在压强为55 GPa时达到最大值,然后减小,这些有趣的结果将有助于开发与设计新的BST铁电器件. 进一步地,通过电子态密度和密度分布图的研究分析可知:在低压区域(0P55 GPa),带隙的增加是由于费米能级附近导带反键态的形成和价带成键态的形成共同作用的结果. 在高压区域(P55 GPa),则是出现的离域现象占主导(电子的离域作用超过键态的作用),从而使带隙减小.

English Abstract

参考文献 (69)

目录

    /

    返回文章
    返回