搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阻抗模型解析的氧化锆固体电解质组织结构演变模型

胡永刚 夏风 肖建中 雷超 李向东

引用本文:
Citation:

基于阻抗模型解析的氧化锆固体电解质组织结构演变模型

胡永刚, 夏风, 肖建中, 雷超, 李向东

Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis

Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao, Li Xiang-Dong
PDF
导出引用
  • 晶界对多元多晶电解质材料电导率的影响, 已成为制约高温固体电解质材料发展的瓶颈. 传统的晶界观察方法难以将高温下材料的组织结构与电导性能相对应. 鉴于此, 本文研究了部分稳定氧化锆(PSZ) 固体电解质材料的变温交流阻抗特性, 并对交流阻抗谱进行了拟合分析, 发现等效拟合电路随温度的上升而发生变化. 通过对不同等效电路模型的物理解析, 得出PSZ电解质材料显微结构在高温下的演变模型. 经进一步分析, 演绎出一种'短程有序'的'晶界桥接'组织模型, 为改善PSZ电解质材料的晶界电导提供了参考.
    The effect of grain boundary on conductivity in multicomponent polycrystalline solid electrolyte has become a bottleneck for the development of high temperature solid electrolyte materials. The corresponding relationship between the microstructure and conductivity at high temperature is difficult to obtain based on the traditional methods of grain boundaries observation. In view of this, the variable temperature AC impedance characteristics of partially stabilized zirconia (PSZ) solid electrolyte material are investigated, and their fitting to AC impedance spectrum is analyzed. It is found that the fitting equivalent circuits varies with temperature increasing. By analyzing the physical meanings of different equivalent circuits, the microstructure evolution model of PSZ electrolyte material at elevated temperature is obtained. A microstructure model of 'short-range ordered ' with the structure of 'boundary bridge' is deduced after further analysis, which could provide the reference for improving the grain boundary conductivity in PSZ electrolyte materials.
    [1]

    Guo X, Waser R 2006 Prog. Mater. Sci. 51 151

    [2]

    Guo X 1998 Acta. Phys. Sin. 47 1331 (in Chinese) [郭新 1998 物理学报 47 1331]

    [3]

    Kilner J A, Steele B C H 1981 Non stoichiometric Oxides (New York: Academic Press) p233---269

    [4]

    Abraham M M, Weeks R A, Clark G W, Finch C B 1966 Phys. Rev. 148 350

    [5]

    Nakamura A, Wagner J B 1986 J. Electrochem. Soc. 133 1542

    [6]

    Mackrodt W C, Woodrow P W 1986 J. Am. Ceram. Soc. 69 277

    [7]

    Butler V, Catlow C R A, Fender B E F 1981 Solid State Ionics 5 539

    [8]

    Murch G E, Nowick A S 1984 Diffusion in crystalline solids (Orlando: Academic) p143---188

    [9]

    Orliukas A, Bohac P, Sasaki K, Gauckler L J 1994 Solid State Ionics 72 35

    [10]

    Maier J 1995 Prog. Solid St. Chem. 23 171

    [11]

    Etsell T H, Flengas S N 1970 Chem. Rev. 70 339

    [12]

    Cui W Q, Shen Z Q, Zhou D B l991 Acta Phys. Sin. 40 1101 (in Chinese) [崔万秋, 沈志奇, 周德保 l991 物理学报 40 1101]

    [13]

    Tsubakino H, Sonoda K, Nozato R 1993 J. Mater. Sci. Lett. 12 196

    [14]

    Van Dijk T, Burggraaf A J 1981 Phys. Status Solidi A 63 229

    [15]

    Schouler E, Giroud G, Kleitz M 1973 J. Chem. Phys. 70 1309

    [16]

    Bauerle J E 1969 J. Phys. Chem. Solids 30 2657

    [17]

    Fleig J, Maier J 1999 J. Eur. Ceram. Soc. 19 693

    [18]

    Muccillo E N S, Kleitz M 1996 J. Eur. Ceram. Soc. 16 453

    [19]

    Jonscher A K 1977 Nature 267 673

    [20]

    Li Y, Gong J H, Xie Y S, Tang Z L, Chen Y F, Zhang Z T 2002 J. Inorg. Mater. 17 811 (in Chinese) [李英, 龚江宏, 谢裕生, 唐子龙, 陈运法, 张中太 2002 无机材料学报 17 811]

    [21]

    Bauerle J E, Hrizo J 1969 J. Phys. Chem. Solids 30 565

    [22]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 物理学报 59 7447]

    [23]

    Zhang T S, Ma J, Chen Y Z, Luo L H, Kong L B, Chan S H 2006 Solid State Ionics 177 1227

    [24]

    Hsieh G, Ford S J, Mason T O, Pederson L R 1997 Solid State Ionics 100 297

  • [1]

    Guo X, Waser R 2006 Prog. Mater. Sci. 51 151

    [2]

    Guo X 1998 Acta. Phys. Sin. 47 1331 (in Chinese) [郭新 1998 物理学报 47 1331]

    [3]

    Kilner J A, Steele B C H 1981 Non stoichiometric Oxides (New York: Academic Press) p233---269

    [4]

    Abraham M M, Weeks R A, Clark G W, Finch C B 1966 Phys. Rev. 148 350

    [5]

    Nakamura A, Wagner J B 1986 J. Electrochem. Soc. 133 1542

    [6]

    Mackrodt W C, Woodrow P W 1986 J. Am. Ceram. Soc. 69 277

    [7]

    Butler V, Catlow C R A, Fender B E F 1981 Solid State Ionics 5 539

    [8]

    Murch G E, Nowick A S 1984 Diffusion in crystalline solids (Orlando: Academic) p143---188

    [9]

    Orliukas A, Bohac P, Sasaki K, Gauckler L J 1994 Solid State Ionics 72 35

    [10]

    Maier J 1995 Prog. Solid St. Chem. 23 171

    [11]

    Etsell T H, Flengas S N 1970 Chem. Rev. 70 339

    [12]

    Cui W Q, Shen Z Q, Zhou D B l991 Acta Phys. Sin. 40 1101 (in Chinese) [崔万秋, 沈志奇, 周德保 l991 物理学报 40 1101]

    [13]

    Tsubakino H, Sonoda K, Nozato R 1993 J. Mater. Sci. Lett. 12 196

    [14]

    Van Dijk T, Burggraaf A J 1981 Phys. Status Solidi A 63 229

    [15]

    Schouler E, Giroud G, Kleitz M 1973 J. Chem. Phys. 70 1309

    [16]

    Bauerle J E 1969 J. Phys. Chem. Solids 30 2657

    [17]

    Fleig J, Maier J 1999 J. Eur. Ceram. Soc. 19 693

    [18]

    Muccillo E N S, Kleitz M 1996 J. Eur. Ceram. Soc. 16 453

    [19]

    Jonscher A K 1977 Nature 267 673

    [20]

    Li Y, Gong J H, Xie Y S, Tang Z L, Chen Y F, Zhang Z T 2002 J. Inorg. Mater. 17 811 (in Chinese) [李英, 龚江宏, 谢裕生, 唐子龙, 陈运法, 张中太 2002 无机材料学报 17 811]

    [21]

    Bauerle J E, Hrizo J 1969 J. Phys. Chem. Solids 30 565

    [22]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 物理学报 59 7447]

    [23]

    Zhang T S, Ma J, Chen Y Z, Luo L H, Kong L B, Chan S H 2006 Solid State Ionics 177 1227

    [24]

    Hsieh G, Ford S J, Mason T O, Pederson L R 1997 Solid State Ionics 100 297

计量
  • 文章访问数:  6683
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-30
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回