搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋为1/2的XY模型亚铁磁棱型链的物性和有序-无序竞争

成泰民 葛崇员 孙树生 贾维烨 李林 朱林 马琰铭

自旋为1/2的XY模型亚铁磁棱型链的物性和有序-无序竞争

成泰民, 葛崇员, 孙树生, 贾维烨, 李林, 朱林, 马琰铭
PDF
导出引用
导出核心图
  • 利用不变本征算符法, 计算低温下自旋为1/2的XY模型一维亚铁磁棱型链系统的元激发谱, 讨论在此系统中不同的特殊情形下的元激发能量, 从而给出体系的三个临界磁场强度的解析解HC1, HC2, Hpeak. 分析不同外磁场下 体系的磁化强度随温度的变化规律, 发现三个临界磁场强度的解析解HC1, HC2, Hpeak是正确的, 并从三个元激发对磁化强度的贡献进行了说明. 低温下磁化强度随外磁场的变化呈现1/3磁化平台. 体系的磁化率随温度或者外磁场的变化都出现了双峰现象. 这说明双峰源于二聚体分子内电子自旋平行排列的铁磁交换作 用能和二聚体与单基体分子间电子自旋反平行排列的反铁磁交换作用能, 热无序能, 外磁场强度相关的自旋磁矩势能之间的竞争.
    • 基金项目: 国家自然科学基金(批准号: 10647138);中国博士后科学基金(批准号: 200904501018)和国家重点基础研究发展计划(批准号: 2011CB606404)资助的课题.
    [1]

    Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T 1997 J. Phys. Chem. B 101 3342

    [2]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [3]

    Maekawa K, Shiomi D, Ise T, Sato K, Takui T 2005 J. Phys. Chem. B 109 9299

    [4]

    Fu H H, Yao K L, Liu Z L 2006 Phys. Rev. B 73 104454

    [5]

    Fu H H, Yao K L, Liu Z L 2006 Phys. Lett. A 358 443

    [6]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [7]

    Rule K C, Wolter A U B, Sullow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [8]

    Schollwöck U 2005 Rev. Mod. Phys. 77(1) 259

    [9]

    Gu B, Su G 2007 Phys. Rev. B 75 174437

    [10]

    Chen S, Wang Y P, Ning W Q, Wu C J, Lin H Q 2006 Phys. Rev. B 74 174424

    [11]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153

    [12]

    Maisinger K, Schollwock U, Brehmer S, Mikeska H J, Shoji Y 1998 Phys. Rev. B 58 R5908

    [13]

    Batista C D, Ortiz G 2001 Phys. Rev. Lett. 86 1082

    [14]

    Fan H Y, Li C 2004 Phys. Lett. A 321 75

    [15]

    Fan H Y, Wu H 2005 Mod. Phys. Lett. B 19 1361

    [16]

    Fan H Y, Yuan H C, Wu H 2011 Invariant Eigen-Operator Method in Quantum Mechanics (Shanghai: Shanghai Jiao Tong University Press) pp175-193 (in Chinese) [范洪义, 袁洪春, 吴昊 2011 量子力学的不变本征算符方法 (上海: 上海交通大学出版社) 第175-193页]

    [17]

    Schmidt K P, Uhrig G S 2003 Phys. Rev. Lett. 90 227204

    [18]

    Derzhko O, Richter J, Krokhmalskii T, Zaburannyi O 2004 Phys. Rev. E 69 066112

    [19]

    Venuti L C, Roncaglia M 2010 Phys. Rev. A 81 060101

    [20]

    Schwalm W A, Schwalm M K, Giona M 1997 Phys. Rev. E 55 6741

    [21]

    Bao S Q, Hu Z, Shen J L, Yang G Z 1996 Phys. Rev. B 53 735

    [22]

    Gildenblat G 1985 Phys. Rev. B 32 3006

    [23]

    Cavallo A, Cosenza F, de Cesare L 2002 Phys. Rev. B 66 174439

    [24]

    Cavallo A, Cosenza F, de Cesare L 2001 Phys. Rev. Lett. 87 240602

    [25]

    Wang Y Z, Zhang Z D 2002 Solid State Commun. 124 215

    [26]

    Jacobs I S 1961 J. Appl. Phys. 32 61S

    [27]

    He Z Z, Yutaka U 2008 Phys. Rev. B 77 052402

    [28]

    Wang X, Zotos X, Karadamoglou J, Papanicolaou N 2000 Phys. Rev. B 61 14303

    [29]

    Karadamoglou J, Papanicolaou N 1999 Phys. Rev. B 60 9477

    [30]

    Sakai T 1999 Phys. Rev. B 60 6238

  • [1]

    Shiomi D, Nishizawa M, Sato K, Takui T, Itoh K, Sakurai H, Izuoka A, Sugawara T 1997 J. Phys. Chem. B 101 3342

    [2]

    Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T, Ohta H 2005 Phys. Rev. Lett. 94 227201

    [3]

    Maekawa K, Shiomi D, Ise T, Sato K, Takui T 2005 J. Phys. Chem. B 109 9299

    [4]

    Fu H H, Yao K L, Liu Z L 2006 Phys. Rev. B 73 104454

    [5]

    Fu H H, Yao K L, Liu Z L 2006 Phys. Lett. A 358 443

    [6]

    Jeschke H, Opahle I, Kandpal H, Valent R, Das H, Saha-Dasgupta T, Janson O, Rosner H, Brühl A, Wolf B, Lang M, Richter J, Hu S, Wang X, Peters R, Pruschke T, Honecker A 2011 Phys. Rev. Lett. 106 217201

    [7]

    Rule K C, Wolter A U B, Sullow S, Tennant D A, Brühl A, Köhler S, Wolf B, Lang M, Schreuer J 2008 Phys. Rev. Lett. 100 117202

    [8]

    Schollwöck U 2005 Rev. Mod. Phys. 77(1) 259

    [9]

    Gu B, Su G 2007 Phys. Rev. B 75 174437

    [10]

    Chen S, Wang Y P, Ning W Q, Wu C J, Lin H Q 2006 Phys. Rev. B 74 174424

    [11]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153

    [12]

    Maisinger K, Schollwock U, Brehmer S, Mikeska H J, Shoji Y 1998 Phys. Rev. B 58 R5908

    [13]

    Batista C D, Ortiz G 2001 Phys. Rev. Lett. 86 1082

    [14]

    Fan H Y, Li C 2004 Phys. Lett. A 321 75

    [15]

    Fan H Y, Wu H 2005 Mod. Phys. Lett. B 19 1361

    [16]

    Fan H Y, Yuan H C, Wu H 2011 Invariant Eigen-Operator Method in Quantum Mechanics (Shanghai: Shanghai Jiao Tong University Press) pp175-193 (in Chinese) [范洪义, 袁洪春, 吴昊 2011 量子力学的不变本征算符方法 (上海: 上海交通大学出版社) 第175-193页]

    [17]

    Schmidt K P, Uhrig G S 2003 Phys. Rev. Lett. 90 227204

    [18]

    Derzhko O, Richter J, Krokhmalskii T, Zaburannyi O 2004 Phys. Rev. E 69 066112

    [19]

    Venuti L C, Roncaglia M 2010 Phys. Rev. A 81 060101

    [20]

    Schwalm W A, Schwalm M K, Giona M 1997 Phys. Rev. E 55 6741

    [21]

    Bao S Q, Hu Z, Shen J L, Yang G Z 1996 Phys. Rev. B 53 735

    [22]

    Gildenblat G 1985 Phys. Rev. B 32 3006

    [23]

    Cavallo A, Cosenza F, de Cesare L 2002 Phys. Rev. B 66 174439

    [24]

    Cavallo A, Cosenza F, de Cesare L 2001 Phys. Rev. Lett. 87 240602

    [25]

    Wang Y Z, Zhang Z D 2002 Solid State Commun. 124 215

    [26]

    Jacobs I S 1961 J. Appl. Phys. 32 61S

    [27]

    He Z Z, Yutaka U 2008 Phys. Rev. B 77 052402

    [28]

    Wang X, Zotos X, Karadamoglou J, Papanicolaou N 2000 Phys. Rev. B 61 14303

    [29]

    Karadamoglou J, Papanicolaou N 1999 Phys. Rev. B 60 9477

    [30]

    Sakai T 1999 Phys. Rev. B 60 6238

  • [1] 王泽温, 介万奇. 稀磁半导体Hg0.89Mn0.11Te磁化强度及磁化率的研究. 物理学报, 2007, 56(2): 1141-1145. doi: 10.7498/aps.56.1141
    [2] 刘雍, 周睿, 李靖, 张悦, 熊锐, 尹镝, 汤五丰, 石兢. 尖晶石结构自旋有序CaTi2O4单晶生长和磁化率特性研究. 物理学报, 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [3] 邵宗乾, 陈金望, 李玉奇, 潘孝胤. 限制在一维谐振势下的三维自由电子气的一些热力学性质. 物理学报, 2014, 63(24): 240502. doi: 10.7498/aps.63.240502
    [4] 汪丽莉, 熊 锐, 魏 伟, 胡 妮, 林 颖, 朱本鹏, 汤五丰, 余祖兴, 汤 征, 石 兢. 缺氧条件下准一维自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ的磁化率特性研究. 物理学报, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [5] 郑伟, 杜安. 外场作用下铁电/铁磁双层膜的极化磁化性质. 物理学报, 2019, 68(3): 037501. doi: 10.7498/aps.68.20181879
    [6] 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政, 张志明, 万梅香, 龙云泽, 陈兆甲, 郑 萍, 王楠林. 纳米管结构聚苯胺的电阻率和磁化率. 物理学报, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [7] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [8] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质. 物理学报, 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [9] 娄平, 周宗立, 章国顺. 相互作用突然开启后的反铁磁海森伯模型. 物理学报, 2011, 60(3): 031101. doi: 10.7498/aps.60.031101
    [10] 王维, 张锡娟, 杨翠红, 成海英. 强磁场下Er2Ga5O12的磁晶各向异性. 物理学报, 2002, 51(12): 2846-2848. doi: 10.7498/aps.51.2846
    [11] 高鹏, 殷海荣, 宫玉彬, 杨中海, 魏彦玉. 考虑非常数自旋扭矩时LLS方程的微扰解. 物理学报, 2010, 59(5): 3504-3508. doi: 10.7498/aps.59.3504
    [12] 张继业, 骆 军, 梁敬魁, 纪丽娜, 刘延辉, 李静波, 饶光辉. 赝二元固溶体TbGa1-xGex(0≤x≤0.4)的结构与磁性. 物理学报, 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [13] 陈杰, 鲁习文. 舰船感应磁场预测的一种新方法. 物理学报, 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [14] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质. 物理学报, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [15] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算. 物理学报, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [16] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [17] 孟继宝, 陈兆甲, 雒建林, 景秀年, 王楠林. 重电子金属CeCu5.8M0.2(M=Ni, Zn, Cd)低温物性的比较. 物理学报, 2004, 53(4): 1177-1181. doi: 10.7498/aps.53.1177
    [18] 曾杰. 多原子分子抗磁磁化率的计算. 物理学报, 1965, 124(8): 1573-1577. doi: 10.7498/aps.21.1573
    [19] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [20] 罗河烈, 文亦汀, 孙克, 冯远冰, 黄锡成. 表面效应对γ-Fe2O3微粉饱和磁化强度的影响. 物理学报, 1983, 32(6): 812-818. doi: 10.7498/aps.32.812
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1872
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-19
  • 修回日期:  2012-03-11
  • 刊出日期:  2012-09-20

自旋为1/2的XY模型亚铁磁棱型链的物性和有序-无序竞争

  • 1. 沈阳化工大学数理系, 沈阳 110142;
  • 2. 吉林大学超硬材料国家重点实验室, 长春 130012;
  • 3. 东北大学物理系, 沈阳 110004
    基金项目: 

    国家自然科学基金(批准号: 10647138)

    中国博士后科学基金(批准号: 200904501018)和国家重点基础研究发展计划(批准号: 2011CB606404)资助的课题.

摘要: 利用不变本征算符法, 计算低温下自旋为1/2的XY模型一维亚铁磁棱型链系统的元激发谱, 讨论在此系统中不同的特殊情形下的元激发能量, 从而给出体系的三个临界磁场强度的解析解HC1, HC2, Hpeak. 分析不同外磁场下 体系的磁化强度随温度的变化规律, 发现三个临界磁场强度的解析解HC1, HC2, Hpeak是正确的, 并从三个元激发对磁化强度的贡献进行了说明. 低温下磁化强度随外磁场的变化呈现1/3磁化平台. 体系的磁化率随温度或者外磁场的变化都出现了双峰现象. 这说明双峰源于二聚体分子内电子自旋平行排列的铁磁交换作 用能和二聚体与单基体分子间电子自旋反平行排列的反铁磁交换作用能, 热无序能, 外磁场强度相关的自旋磁矩势能之间的竞争.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回